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Speech production relies on the orchestrated control of multiple brain
regions. The specific, directional influences within these networks remain
poorly understood. We used regression dynamic causal modelling to infer
the whole-brain directed (effective) connectivity from functional magnetic
resonance imaging data of 36 healthy individuals during the production
of meaningful English sentences and meaningless syllables. We identified
that the two dynamic connectomes have distinct architectures that are
dependent on the complexity of task production. The speech was regulated
by a dynamic neural network, the most influential nodes of which were
centred around superior and inferior parietal areas and influenced the
whole-brain network activity via long-ranging coupling with primary
sensorimotor, prefrontal, temporal and insular regions. By contrast, syllable
production was controlled by a more compressed, cost-efficient network
structure, involving sensorimotor cortico-subcortical integration via superior
parietal and cerebellar network hubs. These data demonstrate the
mechanisms by which the neural network reorganizes the connectivity of
its influential regions, from supporting the fundamental aspects of simple
syllabic vocal motor output to multimodal information processing of
speech motor output.

This article is part of the theme issue ‘Vocal learning in animals and
humans’.
1. Introduction
Speech production is a uniquely complex human behaviour that requires numer-
ous brain regions to perceive, process and comprehend the sensory input,
integrate it with cognitive andmotor intent, and execute the synchronizedmove-
ment of over 100 orofacial, laryngeal and respiratory muscles. Owing to its
complexity, neuroimaging studies of speech control have primarily focused on
examining distinct components of the speech network, such as motor output
[1–4], verbal fluency [5,6], phonological processing [7,8] or sensorimotor inte-
gration [9–11]. A few studies have investigated functional relationships
between regions at thewhole-brain level as well as interactions between different
speech network components, describing the large-scale functional connectome
of speech control [12–14]. Compared with other, more simplistic motor and
non-motor behaviours, speech production was shown to require a specialized
networkwith preferential recruitment of prefrontal, inferior parietal and cerebel-
lar regions. However, while these studies mapped the complexity of global
speech network organization, the directionality of regional interactions and
thus information transfer within the speech connectome remain unknown.

Rooted in methodological limitations, examinations of directional (or
dynamic, effective) network connectivity have been typically limited to assessing
the interactions only between a few (4 to 6) brain regions owing to an unfeasi-
bly high computationally cost of modelling the whole-brain network [15].
Recently, analytical advances in network neuroscience have made possible the
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development of a computationally efficient approach of
regression dynamic causal modelling (rDCM), which interro-
gates effective connectivity of the large-scale brain network,
including over 200 regions [16]. Leveraging this methodology,
we employed rDCM together with graph-theoretical analysis
to examine the whole-brain directional connectomes during
the production of grammatically correct English sentences,
as examples of meaningful real-life speech, and production
of syllables, as examples of meaningless learned motor vocal
output. Our experimental design was similar to our prior
study [12] in order to allow a comparative assessment between
functional and effective connectomes controlling syllable and
speech production. Our overarching hypothesis was that the
speech production network (SPN) exhibits a more complex
integration of cortical sensorimotor information transfer,
directly influencing the activity of the primary motor cortex
for the output of meaningful speech, whereas the syllable pro-
duction network (SylPN) is characterized by directional
coupling between cortical and subcortical areas to support
more fundamental aspects of voluntary vocal motor output.
76:20200256
2. Material and methods
(a) Study participants
We recruited 36 monolingual native-English-speaking healthy
individuals (22 females/14 males; age 51.4 ± 10.6 years). All par-
ticipants were right handed as determined by the Edinburgh
Handedness Inventory and had no history of any past or present
neurological, psychiatric, otolaryngological, or developmental
speech and language problems. Data from 14 participants were
used in the previous study of functional connectome of speech
[12], whereas the remaining 22 participants were recruited
specifically for this study. All participants had a normal cogni-
tive function and scored at least 27 points on the Mini-Mental
State Examination. All participants provided written informed
consent, which was approved by the Institutional Review
Board of Icahn School of Medicine at Mount Sinai and Mass Gen-
eral Brigham.

(b) Experimental design and MRI data acquisition
Brain images for all subjects were acquired on a 3.0 Tesla Philips
MRI scanner equipped with an eight-channel head coil. At the
beginning of the experimental session, a high-resolution T1-
weighted whole-brain image was collected for anatomical refer-
ence using a three-dimensional magnetization-prepared rapid
acquisition gradient echo sequence (TR = 4.5 ms, TE = 3.4 ms,
flip angle = 8°, 172 slices, slice thickness = 2 mm). Whole-brain
functional images were obtained using gradient-weighted echo-
planar imaging (EPI) pulse sequences (effective TR = 10.6 s, with
8.6 s for task and 2 s for image acquisition, TE = 30 ms,
flip angle = 90°, FOV = 240 mm, voxel size = 3.75 × 3.75 mm, 36
slices, slice thickness = 4 mm) with blood oxygen level-dependent
(BOLD) contrast and event-related sparse-sampling design to
minimize motion artefacts. Subjects were instructed to remain
motionless during the scanning and to minimize orofacial move-
ments during speaking; their head was tightly cushioned within
the head coil to prevent motion artefacts.

The fMRI design included syllable and sentence production
and resting as a baseline condition. Specifically, subjects were
instructed to produce a syllable sequence /iʔi/ to capture brain
activity associated with simple vocal motor behaviour and
meaningful, grammatically correct English sentences (e.g., ‘My
father has a new car’, ‘He is hiding behind the house’, ‘Sally
fell asleep in a soft chair’) to assess brain activity associated
with speaking. Eight different sentences were used to minimize
the working memory build-up throughout the scanning session
while capturing the spectrum of phonological and lexical
elements characterizing real-life speech. Each subject completed
four scanning runs within the same fMRI session. Each run
included 8 syllable trials, 8 speech trials and 16 resting trials,
totalling 32 trials of syllable production, 32 trials of sentence
production and 64 trials of resting. All trials were presented
in a pseudorandomized order. Subjects first listened through
the MRI-compatible headphones to four repetitions of the
sample syllable or one sample sentence for 3.6 s and then
repeated them for 5 s (figure 1a). No stimuli were presented
during the resting condition, when subjects rested with their
eyes open.
(c) Data preprocessing
Image preprocessing was performed using AFNI software fol-
lowing a standard analytical protocol. Briefly, after discarding
the first two volumes for equilibrium correction, all volumes
were registered to the high-resolution anatomical scan, spatially
smoothed with a 4 mm Gaussian filter and normalized to the
AFNI standard Talairach–Tournoux space. To control for
motion artefacts, six motion parameters were estimated during
the realignment of the EPI volumes and included as covariates
of no interest in the regressor, together with three quadratic poly-
nomials that were used to model baseline drifts for each imaging
run. In addition, TRs with the Euclidean norm of the motion
derivative of greater than or equal to 1.0 were censored out,
and censoring of outlier TRs was performed to ensure the strin-
gent removal of TRs containing residual motion artefacts, as
described previously [17].

A general linear model analysis identified brain activity
related to speech and syllable production, respectively (SPM12
running on Matlab R2018a). A single regressor per task was mod-
elled using a boxcar function tied to the duration of the
production. The auditory input associated with the task sample
stimuli preceding syllable/speech production was not modelled
given the sparse-sampling event-related fMRI design. The task
regressor was convolvedwith a haemodynamic response function
and entered into a multiple regression model to predict the
observed BOLD response in each voxel. The individual anatom-
ical image was parcellated into 212 regions of interest (ROIs)
based on the cytoarchitectonic maximum probability maps and
macrolabel atlas [12,18]. The brain parcellation included 142 corti-
cal, 36 subcortical and 34 cerebellar regions (figure 1b). The
average BOLD signal during each task production was extracted
from each ROI and used in rDCM analysis.
(d) Effective connectivity analysis
(i) Regression dynamic causal modelling
As one of the major approaches to examining effective connec-
tivity, DCM is a generative modelling framework for estimating
latent neural states from the measured neural signal [15]. In its
linear form, DCM describes neuronal activity dynamics as
the result of the directional (effective) connectivity between
neuronal populations:

dx
dt

¼ Axþ Cu,

where x represents neuronal activity, A is the endogenous connec-
tivity and C indicates how external manipulations directly affect
neuronal activity. This is the inverse of the traditional haemo-
dynamic-forward model, which maps neuronal dynamics dx/dt
to observed BOLD signal. Inverting the generative model relies
on a variational Bayesian approach under the Laplace approxi-
mation [19], a computationally expensive problem for large
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Figure 1. Overview of the experimental design and data processing pipeline. (a) Schematic illustrations of the experimental paradigms for speech and syllable production
tasks. (b) Whole-brain parcellations using the cytoarchitectonic maximum probability map and macrolabel atlases composed of 142 cortical, 36 subcortical and 34 cerebellar
regions of interest (ROIs). ROIs are visualized using Mango 4.1 software. (c) Clustering coefficient and global efficiency of random and empirical networks at different levels of
density. The dashed lines depict the metrics values at 50% density. (d ) Schematic of the fMRI data processing pipeline. (e) Schematic of the nodal elimination strategy
employed to disconnect low-degree nodes from the group network. The histogram shows the distribution of nodal degrees across the 212 ROIs. Nodes with a degree lower
than one standard deviation from the average degree were disconnected (22 nodes, shaded purple area). The final group matrix included 185 nodes for syllable production
and 190 nodes for speech production. Disconnected and retained nodes are shown on three-dimensional brain renderings using BrainNet Viewer software.
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networks. However, recently introduced rDCM translates state
and observation equations from time to frequency domain:

cdx
dt

¼ Ax̂þ Cû,

where the hat symbol denotes the Fourier transform. This
approach makes the likelihood function mathematically tractable
and capable of analysing whole-brain networks [16]. Moreover,
rDCM assumes that the connectivity parameters are independent
across regions, allowing model inversion to take place one region
at a time and, hence, processed in parallel, thus increasing the
computational efficiency of rDCM.
(ii) Individual regression dynamic causal modelling network
construction and thresholding

To examine the directionality of connections in individual
whole-brain effective connectomes during syllable and speech
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production, we first explicitly modelled connectivity between all
212 ROIs via reciprocal links (i.e. full Amatrix) and assumed that
the driving input could elicit activity in all regions (i.e., full C
matrix). Empirical validation of rDCM connectivity estimates in
a whole-brain network, including more than 200 regions and
more than 40 000 parameters, has been shown previously [20].
In each subject, rDCM estimated over 45 000 rDCM parameters
within a 212 × 212 matrix of SPN and SylPN, respectively,
using the TAPAS v. 3.1.0 toolbox running on Matlab R2018a.
The density of each individual matrix per task was computed
as the percentage of non-zero values, which yielded a density
of 99.5% for all matrices, i.e., all 212 × 212 connections except
self-connections. The strength of each connection was normal-
ized to the range 0 to 1 in each direction of a reciprocal
connection.

Next, because high-density networks tend to exhibit random
network characteristics [21] and are difficult to interpret [22], we
reduced the density of each individual matrix by absolute value,
while keeping only the strongest connections. To determine the
density reduction threshold, we constructed 36 synthetic net-
works (one per subject) for each density starting from 5% to
100%, with 5% incremental steps. A total of 720 synthetic net-
works (36 subjects × 20 density levels) were generated. Random
connectivity values between 212 nodes of each synthetic network
were drawn from a uniform distribution between 0 and 1. With
empirical and synthetic SPN and SylPN in the same range of den-
sities, we computed clustering coefficient and global efficiency of
real and random networks at different density levels. Clustering
coefficient represents how well the node is connected to its neigh-
bours and is computed as the geometric average of the edge
weights in the triangles around a node to assess the extent of
local community formation [23]. Global efficiency is calculated
as the average inverse shortest path length in the network and rep-
resents howwell nodes are connected to each other. These metrics
were averaged across subjects and are reported in figure 1c. The
Mann–Whitney rank test was used to compare clustering coeffi-
cient and global efficiency between empirical and random
networks at Bonferroni-corrected p < 0.01. The final individual
network density threshold was set to 50% by sorting connections
based on their absolute strength with subsequent removal of
weakest connections until the density threshold of 50% was
reached (figure 1d ). This approach allowed reduction of the indi-
vidual matrix density while ensuring each network exhibited
significantly different clustering coefficient and global efficiency
compared with random networks. Both empirical networks
showed significantly higher clustering coefficient than random
networks (SylPN: 0.664 ± 0.025; SPN: 0.659 ± 0.028; random net-
work: 0.502 ± 0.000; U = 1296, two-sided p = 3 × 10−13, Mann–
Whitney rank test) and significantly lower global efficiency
(both SylPN and SPN: 0.794 ± 0.014; random network: 0.876 ±
0.001; U = 0, two-sided p = 3 × 10−13, Mann–Whitney rank test).
These findings were similar to differences between empirical
and random functional connectivity matrices in our earlier
study using Pearson’s correlation coefficients [12], suggesting
the overall robustness of SPN and SylPN architectures.

(iii) Group network construction and thresholding
To generate group networks for each task while ensuring the
stability of the parameter estimates in our study, we averaged
individual thresholded matrices across all subjects and applied
distance-dependent consensus thresholding [24] (figure 1d ).
This thresholding approach creates a consensus network by com-
puting the frequency of each connection across the individual
network. It then splits the connections in M bins based on their
length (i.e., distance between two nodes) percentiles, where M
is set to be the average number of connections in the consensus
matrix and selects links with the highest consensus across
participants. This procedure generates group networks with
connections present across the majority of participants and
approximately the same length distribution of individual net-
works. In our dataset, the application of distance-dependent
consensus thresholding resulted in group networks with den-
sities of 46% (M = 17) for each SylPN and SPN. As described
previously [12,14], we additionally removed sparsely connected
nodes, which had an overall degree (i.e., the total number of
nodal connections) below one standard deviation compared
with the average nodal degree in each respective group network
(figure 1e). This nodal elimination strategy removed 27 nodes
from the SylPN and 22 nodes from the SPN and helped reduce
the number of weakly connected regions within the network,
further decreasing the number of parameters to be estimated in
the subsequent analysis. The final group SylPN was composed
of 185 nodes at 47% density, and the final group SPN included
190 nodes at 46% density.

(iv) Quantitative analysis of network topology
To examine global features of the effective network architecture,
we computed the topological distribution of neural communities
(modules), defined as a group of nodes densely connected within
their neural community but sparsely connected with nodes in
other neural communities [25]. We assessed the optimal commu-
nity architecture of group SPN and SylPN networks using a
heuristic modularity maximization strategy based on the
Kernighan–Lin algorithm [26], which employed the Louvain
community detection algorithm [27] implemented in the Brain
Connectivity Toolbox [28]. To account for the stochastic nature
of the heuristic modularity maximization routine, which ran-
domly permuted nodal community assignments, we computed
the community structure 1000 times for each network to ensure
the robustness of the final modular decomposition [12]. The
final community affiliation was determined by quantifying the
frequency with which each node was assigned to the same
neural community in each iteration. Community analysis was
performed separately for inhibitory and excitatory nodes in
each network to investigate the topology of inhibitory and
excitatory influences in each neural community.

(v) Excitatory and inhibitory nodal influence
To examine excitatory and inhibitory regional influences within
SPN and SylPN networks, we computed the inner and outer
degree (i.e., the number of incoming and outgoing connections
of each node, respectively) and strength (i.e., the weighted sum
of incoming and outgoing links of each node, respectively) of
each network node. We classified each node as inhibitory or excit-
atory depending on whether its normalized inner strength was
higher or lower than its normalized outer strength [16] in order
to highlight the main role played by that node in the network.

Because over 16 000 connections characterized a group net-
work of 190 nodes at 46% density, we limited our analysis of
excitatory/inhibitory nodal influences to the strongest t connec-
tions within each SylPN and SPN, where t varied between 1
and 10% in steps of 1%. At each iteration, we computed a differ-
ence matrix where the connection between two nodes a, b had the
following value:

wdiff(a,b) ¼
þ1, if wSPN(a,b) = 0 and wSylPN(a,b) ¼ 0
�1, if wSPN(a,b) ¼ 0 and wSylPN(a,b) = 0
0, elsewhere,

:

8<
:

where wSPN(a,b) is the weight of the connection between nodes a
and b in the SPN filtered with threshold t, and wSylPN(a,b) is the
corresponding weight in the SylPN. To select the optimal value
of t, we computed each node’s degree in the difference matrix
and calculated the number of nodes with a positive degree for
each threshold value t. We chose the minimum t that allowed
us to obtain a difference matrix with at least 25% of the original
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212 nodes, capturing the large-scale network specificity while
maintaining the differences visualizable. This process set t to
1%. With the chosen t, we then visualized the difference matrix
as a connectogram. We computed the degree of specificity for
each node as the difference between the number of SPN-specific
and SylPN-specific connections involving that node, regardless
of their directionality. For example, if a node was involved in
two SPN-specific inhibitory connections and two SylPN-specific
excitatory connections, its degree of specificity would be
0. This measure represented the degree to which each node
was involved in network-specific high-strength connections.

(vi) Hub analysis
Network hubs were determined as nodes whose strength and
degree were both one standard deviation higher than the average
nodal strength and degree in the respective network. The nodal
participation coefficient pci was computed to measure the distri-
bution of nodal connections among all neural communities in
each network. Nodes with pci≥ 20% of maximum participation
coefficient of a network with m neural communities ( pcmax =
1–1/m (pcmax = 0.667 for SylPN and pcmax = 0.75 for SPN)) were
classified as connector hubs (i.e. hubs connecting different
communities), while nodes with pci < 20% were classified as pro-
vincial hubs (i.e. hubs connecting nodes within a community).
The similarity of community structures was quantified by esti-
mating the partition distance, pd, which was calculated as the
normalized mutual information between the community affilia-
tion vectors. To assess the extent of each hub’s influence within
the network depending on the complexity of syllable versus
speech production, we examined the length of connectivity dis-
tance of each hub in the SylPN and SPN, respectively, by
computing the Euclidean distance of the farthest node connected
to each hub.

Finally, to analyse the hub connectivity patterns within the
SylPN and SPN, we considered both shared and distinct hubs in
each network. We computed the hub connectivity matrix of the
SylPN and SPN separately by extracting each hub’s directional
connectivity with other hubs within the network. Inhibitory and
excitatory connections within each network were normalized
using min–max scaling. High-strength connections were defined
as connections with a strength higher than one standard devia-
tion above the average excitatory or inhibitory connection
strength in the hub connectivity matrix. If a pair of hubs exhibited
both high-strength inhibitory and excitatory connections, we
considered the stronger of the two connections.

Network analysis was performed using Python 3.6.0 with the
NetworkX 2.4 package [29] and Matlab R2018a with the Brain
Connectivity Toolbox [28]. The difference matrix was visualized
using Circos software [30].
3. Results
(a) Overall topology of the syllable and speech

production networks
The syllable production network (SylPN) consisted of three
neural communities (figure 2a; electronic supplementary
material, table S1), predominantly spanning

(I) bilateral middle and medial frontal gyri, primary
motor, premotor and occipital cortex, left superior
frontal gyrus, inferior and superior parietal cortex;

(II) bilateral thalamus (prefrontal, temporal and parietal
subdivisions), hippocampus (right area CA, left FD,
bilateral area HATA and SUB), amygdala, right
inferior frontal cortex, somatosensory cortex, parietal
operculum, auditory cortex, inferior/superior parietal
cortex, insula and cerebellum; and

(III) bilateral basal ganglia, red nucleus, thalamus (premotor,
motor, temporal and somatosensory subdivisions),
hippocampus (left area CA and right area FD), left
inferior frontal, primary somatosensory and auditory
cortex, parietal operculum, insula, cerebellum and right
superior frontal gyrus.

Out of 185 nodes of the SylPN, 10% formed the inhibitory
subnetwork (i.e., composed of only inhibitory nodes), and
90% of nodes contributed to the excitatory subnetwork (i.e.
composed of only excitatory nodes), each consisting of three
neural communities (figure 2b,c; electronic supplementary
material, tables S2 and S3).

(i) Speech production network
Although the SPN showed moderate similarity in neural
community organization compared with the SylPN ( pd(SPN,
SylPN) = 0.590), speech production involved overall more
complex network architecture and hub distribution. Specifi-
cally, the SPN was characterized by four neural
communities (figure 2d; electronic supplementary material,
table S1), predominantly including

(I) left inferior/superior frontal and right middle frontal
gyri, right somatosensory, inferior/superior parietal
and auditory cortex, parietal operculum, insula,
hippocampus, medial globus pallidus, cerebellum, bilat-
eral thalamus (premotor, motor, temporal subdivisions)
and amygdala;

(II) bilateral medial and left middle frontal, premotor, pri-
mary motor, cingulate and occipital cortex, cuneus,
precuneus, caudate nucleus, left inferior/superior par-
ietal cortex, insula, thalamus (parietal subdivision)
and cerebellum;

(III) right inferior/superior frontal gyri, left primary soma-
tosensory and auditory cortex, parietal operculum,
bilateral putamen, subthalamic nucleus, thalamus (pre-
frontal, somatosensory, visual subdivisions), left medial
globus pallidus, red nucleus and cerebellum; and

(IV) bilateral inferior parietal cortex (area hIP2), globus
pallidus (lateral), cerebellar lobule VI, right amygdala
(area CM) and red nucleus.

Out of 190 nodes in the SPN, the inhibitory subnetwork
recruited 10% of nodes, while the remaining 90% of nodes
contributed to the excitatory subnetwork, each forming four
neural communities (figure 2e,f; electronic supplementary
material, tables S2 and S3).

(b) Network-specific connectivity of syllable and speech
production networks

More than 25% of nodes in the SylPN and SPN contributed to
the top 1% of strongest connections of each respective net-
work and formed a specialized pattern of the neural
organization supporting the production of a given behaviour
(figure 3a).

The SylPNwas characterized by distinct connections of the
left prefrontal cortex with the right insula, auditory cortex, cer-
ebellum and left nucleus accumbens; right prefrontal cortex
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with right auditory cortex and bilateral cerebellum; left cerebel-
lum with right occipital cortex; and bilateral cerebellum with
bilateral nucleus accumbens (figure 3b, green). The strongest
SylPN-specific connections involved the cerebellum (left
lobule VII and right lobules VII, VIII), inferior occipital gyrus
and nucleus accumbens.

In contrast, the SPN was characterized by distinct connec-
tions of the left prefrontal cortex with the right primary
somatosensory and inferior parietal cortex, bilateral cerebel-
lum with the bilateral prefrontal, auditory and right
inferior/superior parietal cortex, hippocampus and amyg-
dala (figure 3b, purple). The strongest SPN-specific
connections involved the right inferior frontal and temporal
cortex, left hippocampus and bilateral cerebellum (left
lobule VII and bilateral lobule X).

(c) Hubs of the syllable and speech production
networks

In the SylPN, two nodes in the left inferior frontal gyrus
(pars orbitalis) and medial orbitofrontal gyrus formed inhibi-
tory hubs, while 17 nodes in the bilateral superior parietal
cortex (areas 7A, 7 M, 7P, left precuneus, right areas 5L,
7PC), left superior occipital gyrus and bilateral cuneus, pos-
terior cingulate cortex, thalamus (temporal division) and
cerebellum (lobules I/IV, V, VI, Viv) formed excitatory hubs
(figure 4a,b). Among these hubs, nine (one inhibitory; eight
excitatory) were connectors, establishing connections
between different neural communities, and 10 (one inhibi-
tory; nine excitatory) were provincials, establishing
connections within their own communities (figure 4b). The
majority of SylPN hubs were in the first neural community
(N = 10), followed by the second (N = 5) and third (N = 4)
neural communities (figure 4b).

The SPNhad three inhibitory hubs, including the same two
inhibitory hubs of the SylPN and an additional hub in the left
cerebellar lobule X (figure 4a,b). The SPN excitatory hubs com-
prised 20 nodes, including nearly half (41%) of those present in
the SylPN—superior parietal areas 7A (left), 7P (bilateral), 5L
(right), left precuneus and bilateral cuneus—in addition to
left superior parietal areas 5L, 5M, 7M, 7PC, inferior parietal
areas PGm and PGa, bilateral primary motor area 4a, right
primary somatosensory area 2 and insula, left middle cingulate
cortex, auditory areas hIP1 and hIP3, and right middle temporal
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gyrus (figure 4a,b). Among these, three hubs (two inhibitory, one
excitatory) were connectors linking differential neural commu-
nities, and 20 hubs (1 inhibitory, 19 excitatory) were
provincials linking regions within their own neural commu-
nities (figure 4b). The majority of SPN hubs were found in the
second neural community (N = 14), followed by the first (N =
5) and third (N= 4) neural communities (figure 4b). Hubs in
both the SylPN and SPN were left-hemisphere dominant,
including 14 out of 19 SylPN hubs and 16 out of 23 SPN hubs.

(i) Effective connectivity of shared hub network of syllable
production network and speech production network

Although both the SylPN and SPN shared nine hubs in fron-
tal, parietal and occipital areas, their directional patterns of
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information transfer (i.e., direct influence upon another
region) differed considerably when comparing syllable with
speech production (figure 4c,d).

Within the frontal lobe, the left inferior frontal hub
received a projection from the left cuneus in both the SylPN
and SPN; however, the left medial orbitofrontal hub had an
incoming projection from the left inferior frontal area in the
SylPN while sending an outgoing projection to this region
in the SPN (figure 4d (I)). Moreover, incoming projections
to the left medial orbitofrontal gyrus from the excitatory
left cerebellar lobule VIv hub in the SylPN were switched
to the incoming projection from the inhibitory left cerebellar
lobule X in the SPN.

Within the occipital lobe, bilateral cuneus hubs had a
broader connectivity pattern in the SylPN than in the SPN
(figure 4d (II)). The left excitatory cuneus hub involved out-
going projections to right superior parietal area 7M and the
left precuneus as well as incoming projections from left
superior parietal areas 7M, 7P, and superior occipital gyrus.
On the contrary, the left cuneus in the SPN established an
outgoing connection with excitatory left superior parietal
area 7P. The right cuneus hub in the SylPN had an outgoing
projection to right superior parietal area 7M and incoming
projections from bilateral superior parietal area 7M and
right areas 5L, 7A, 7P. The directions of cuneus connectivity
with superior parietal areas 7A (left) and 7P (right) were
reversed in the SPN compared with the SylPN.

Finally, the most complex and dense connectivity pattern
was seen for the shared parietal hubs in both the SylPN and
SPN (figure 4d (III)). All parietal hubs of the SylPN established
outgoing connectivity with right superior parietal area 7A,
whereas all parietal hubs of the SPN had outgoing projections
to the left superior parietal area 5L. Other most frequent con-
nections were directed to bilateral superior parietal areas 7M,
7A, 7P, left precuneus and cuneus in the SylPN and left pri-
mary motor area 4a, superior parietal areas 5L, 5M, 7A, 7P
and precuneus in the SPN.
(ii) Effective connectivity of distinct hub network of syllable
production network and speech production network

The majority of hubs in each network were not shared with
the other network (53% in SylPN, 61% in SPN). The SylPN
distinctly included hubs in occipital and thalamic regions,
whereas the SPN had distinct hubs in primary motor, inferior
parietal, insular and middle temporal areas (figure 4a–c,e).
In addition, while both the SylPN and SPN involved superior
parietal, cingulate and cerebellar regions in their hub net-
works, their respective network hubs occupied distinct
areas within these regions.

In the SylPN, parietal hubs in bilateral superior parietal
area 7M and right area 7A established similar connectivity
with bilateral superior parietal areas 7P and cuneus (figure 4e
(I)). The left posterior cingulate hub established an outgoing
projection to left superior parietal area 7P and incoming pro-
jections from bilateral superior parietal area 7M and left
precuneus (figure 4e (II)). The left superior occipital hub had
an outgoing projection to the left cuneus and an incoming pro-
jection from superior parietal area 7P (figure 4e (III)). The left
thalamus (temporal subdivision) had an incoming projection
from left posterior cingulate cortex (figure 4e (IV)), and the
left cerebellar hubs in lobules I/IV, V, VI had common interlob-
ular connections, while the left cerebellar hub in lobule VIv
had additional outgoing projections to left superior parietal
area 7P (excitatory) and the left medial orbital gyrus (inhibi-
tory) (figure 4e (V)).

In the SPN, both left and right primary motor area 4a hubs
received a projection from right superior parietal area 5L,
whereas left area 4a had additional incoming projections from
left superior parietal areas 5L, 5M, 7A, 7P, 7PC (figure 4e
(VI)). Parietal hubs were prevalent within the SPN and included
left inferior parietal areas PFm, PGa, hIP1, hIP3 and superior
parietal areas 5L, 5M, 7PC, with common connections within
the bilateral parietal cortex and outgoing projections to left pri-
mary motor area 4a (figure 4e (VII)). In addition, the hub in
right primary somatosensory area 2 received projections from
the right superior parietal cortex and primary motor area 4a.
The middle cingulate hub sent a projection to left superior par-
ietal area 5M (figure 4e (VIII)), while the right insular hub and
middle temporal hub established bidirectional projections
(figure 4e (IX, X)) and received a projection from the right
middle temporal gyrus (figure 4e (IX)). The cerebellum contrib-
uted the only inhibitory hub in the left cerebellar lobule X,
which sent an outgoing projection to the left middle orbital
gyrus within the hub network (figure 4c (VI)).

(iii) Long-range influence of network hubs
The projection system and extent of each hub involved in both
the SylPN and SPN were assessed by computing the distance
of the farthest nodewith an excitatory or inhibitory connection
to the hub. The SPN hubs projected to and influenced brain
regions at a greater distance than SylPN hubs (projection
distance: 105.4 ± 16.3 mm in SPN; 101.4 ± 17.0 mm in SylPN;
p = 0.049, Wilcoxon signed-rank test) by establishing longest
ranging projections with left prefrontal and bilateral
superior/inferior regions (figure 5).
4. Discussion
Using a computationally efficient rDCMand graph-theoretical
analyses of fMRI data in healthy individuals, we examined the
whole-brain dynamic connectome during the production of
meaningful, real-life speech compared with a meaningless
vocal motor task, syllable. In line with our previous study,
which described the functional connectome of speech control
[12], the current findings demonstrate that speech production
involves a highly complex orchestration of brain regional con-
nectivity. Here, our model-based approach further inferred
information about directional patterns of information transfer
within speech and syllable production networks, allowing,
for the first time to our knowledge, expansion of our under-
standing of directed regional influences within these
specialized large-scale connectomes. Specifically, we deter-
mined that speaking is regulated by a directed neural
network, the most influential nodes of which are centred
around primary sensorimotor and parietal cortical areas and
preferentially influence prefrontal regions via long-ranging
functional connectivity. Below, we discuss the dynamic con-
nectivity of the SPN in detail, with comparisons to the SylPN.

The SPN architecture was characterized by a more segre-
gated network topology than the SylPN. The SPN included
four neural communities, as opposed to three communities
of the SylPN (figure 2), which was achieved by forming smal-
ler but stronger integrated populations of brain regions,
pointing to the greater specialization of the SPN function.
Notably, the additional fourth SPN community was
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composed of brain regions involved in various aspects of
speech control, including visuospatial transformations for
integration with motor action planning (intra-parietal area
hIP2) [29], semantic verbal fluency (lateral globus pallidus)
[30], generation of pre-articulatory verbal code (cerebellar
lobule VI) [31], auditory prosodic categorization (amygdala)
[32], and articulo-phonological processing (red nucleus)
[33]. On the other hand, the SPN established only three
connector hubs, which interconnected its four neural commu-
nities, versus 20 provincial hubs that exerted influence within
their own subcommunities (figure 4). These data suggest that
fewer connector hubs, including left inferior frontal, medial
orbitofrontal and superior parietal cortex, provide the multi-
modal integration of the SPN, whereas a prevailing number
of provincial hubs distributed across different subdivisions
of primary sensorimotor, parietal, cingulate, insular, tem-
poral, occipital and cerebellar regions support network
activity through controlling smaller groups of neural popu-
lations. Conversely, the SylPN hubs were nearly equally
split between connectors and provincials (9 versus 10), indi-
cating a more uniform distribution of the overall network
regulatory influence between and within communities.

Given that syllables are building blocks of connected
speech production, the SylPN and SPN shared the same set
of hubs in prefrontal, parietal and occipital areas (figure 4b).
However, their respective directional connectivity profiles dif-
fered substantially between the two networks (figure 4d). For
example, the SPN hub in left superior parietal area 7A, which is
known to be involved inmotor sequencing of speech production
[31], had wider-reaching incoming and outgoing connections
with other bilateral parietal areas and left primary motor area
4a. The samehub in the SylPNhadpredominantlyoutgoing con-
nections that were limited within the superior parietal cortex. By
contrast, hubs in the bilateral cuneus,which is known to be active
during listening, production and reading of the word lists [32],
had a more enhanced projection profile, connecting to six differ-
ent subdivisions of the surrounding parietal cortex in the SylPN.
The same hubs in the SPN were restricted to only one outgoing
and one incoming parietal projection. These findings suggest
that each network is able to reorganize its hubs for prioritization
of information transfer that is specifically associated with the
complexity of a given task production.

The majority of shared hubs in both networks were excit-
atory, influencing or being influenced by other excitatory
regions. Only two hubs were inhibitory, including the left
inferior frontal gyrus pars orbitalis, known for its role in lexical
retrieval and emotional prosody [33,34], and the left medial
orbitofrontal gyrus, involved in error phoneme categorization
[35], reflecting their essential modulatory function in support-
ing both basic and complex vocal motor production.



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200256

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 A

pr
il 

20
23

 

The most notable differences between the SylPN and SPN
were observed in the organization of the behaviour-specific
hubs. Specifically, the SylPN had a distinct overrepresentation
of excitatory cerebellar hubs (figure 4e). The cerebellum is
involved in the modulation of syllabic timing and rhythmic
structure, concatenation of syllable strings into articulated
sentences, and error-driven adjustment of motor commands
[36–38]. Cerebellar hubs participated in bidirectional infor-
mation transfer between different cerebellar lobules and
directly influenced orbitofrontal and superior parietal
activity, thus acting at both regional and large-scale SylPN
levels. It is notable that the thalamus was another distinct
hub of the SylPN, as it lies on the path of cerebellar connec-
tivity with cortical regions. The presence of the cerebellum
and thalamus as distinct SylPN hubs likely allows enhanced
timing precision during repetitive syllable production. The
absence of the thalamus and several cerebellar regions from
the SPN hubs may be due to the increased complexity of
the speech task, which prioritized the involvement of other
brain regions as hubs over the thalamus and cerebellum.

In contrast to the SylPN, the SPN recruited primary
motor and somatosensory hubs that were influenced by
heavy projections from bilateral superior parietal areas,
inferior parietal hubs that further broadened the overall
influence of intra-parietal connectivity, and bidirectionally
connected middle temporal and insular hubs (figure 4e). The
presence of these distinct SPN hubs and their respective
directional connectivity profiles likely allows the balanced
integration of multimodal processes necessary for speech
perception and processing, sensorimotor transformations,
and motor output. While the roles of the inferior frontal
gyrus and primary motor cortex are at the centre of discussion
when considering neural control of speech production [12,39–
43], our data show that the major information flow within the
SPN is in fact directed through the superior/inferior parietal
cortex, which subsequently influences other speech-associated
cortical areas and seemingly integrates them into the neural
network for speech production. Notably, in the SPN compared
with the SylPN, prefrontal areas, including the inferior frontal
gyrus, appear to receive denser (figure 3) and longer-ranging
(figure 5) projections from parietal and cerebellar regions that
likely influence and contribute to more refined speech moni-
toring and motor preparation.

In summary, we combined fMRI data with a novel compu-
tational approach of rDCM and graph-theoretical analysis to
examine whole-brain effective connectivity during real-life
speaking versus simple syllable production. We demonstrated
that neural network undergoes reorganization of its connec-
tivity with increased complexity during speaking. Highly
influential hubs in superior and inferior parietal areas influ-
ence the whole-brain network activity via directed and long-
ranging projections with primary sensorimotor, prefrontal,
temporal and insular areas, which together support the multi-
modal information processing for speech motor output. By
contrast, the neural network during simpler syllable pro-
duction is characterized by a more compressed, cost-efficient
structure, which supports the essential elements of sequence
timing and sensorimotor integration via the influence exerted
by superior parietal and cerebellar network hubs.
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