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Dystonia, a debilitating neurological movement disorder, is characterized by involuntary

muscle contractions and develops from a complex pathophysiology. Graph theoretical

analysis approaches have been employed to investigate functional network changes in

patients with different forms of dystonia. In this study, we aimed to characterize the

abnormal brain connectivity underlying writer’s cramp, a focal hand dystonia. To this

end, we examined functional magnetic resonance scans of 20 writer’s cramp patients

(11 females/nine males) and 26 healthy controls (10 females/16 males) performing a

sequential finger tapping task with their non-dominant (and for patients non-dystonic)

hand. Functional connectivity matrices were used to determine group averaged brain

networks. Our data suggest that in their neuronal network writer’s cramp patients

recruited fewer regions that were functionally more segregated. However, this did

not impair the network’s efficiency for information transfer. A hub analysis revealed

alterations in communication patterns of the primary motor cortex, the thalamus and

the cerebellum. As we did not observe any differences in motor outcome between

groups, we assume that these network changes constitute compensatory rerouting

within the patient network. In a secondary analysis, we compared patients with simple

writer’s cramp (only affecting the hand while writing) and those with complex writer’s

cramp (affecting the hand also during other fine motor tasks). We found abnormal

cerebellar connectivity in the simple writer’s cramp group, which was less prominent

in complex writer’s cramp. Our preliminary findings suggest that longitudinal research

concerning cerebellar connectivity during WC progression could provide insight on early

compensatory mechanisms in WC.

Keywords: writer’s cramp, functional magnetic resonance imaging (fMRI), functional brain connectivity,
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INTRODUCTION

Dystonia is the third most common type of movement
disorder (1). It includes heterogeneous symptoms characterized
by involuntary muscle contractions resulting in abnormal
movement patterns (2). In the case of writer’s cramp (WC),
dystonic symptoms affect the dominant hand during writing or,
in a more complex form of the disease, during additional fine
motor tasks (3). While the different forms of dystonia have been
clinically well-characterized, the cause of WC remains unclear.

Several studies demonstrated a loss of surround inhibition in
the primary motor cortex and abnormal basal ganglia activity
(4–7). Furthermore, a sensory disorder has been postulated,
including maladaptive cortical plasticity with dedifferentiation
of somatosensory representations (8, 9), abnormal temporal
discrimination (10), impaired cortical somatosensory processing
and abnormal sensorimotor integration (11, 12).

In the past years it has become increasingly evident that many
brain functions rely on complex interactions between different
brain regions. Mathematical approaches, including those of
theoretical graph analysis, have been employed to study brain
networks (13). Many brain disorders have been attributed to
changes in network function, for example Alzheimer’s dementia,
Parkinson’s disease and Huntington’s disease (14–16).

Fuertinger and Simonyan (17) showed that the neuronal
network in spasmodic dysphonia not only differs from that
of healthy volunteers, but also shows differences in network
organization between clinical subtypes. Network analysis has
been employed to investigate differences between task-specific
and non-task-specific dystonias, suggesting the presence of
large-scale network changes as a common feature in isolated
focal dystonias (18). It has been shown that a feature shared
between task-specific dystonias was disorganization of their
network kernels, i.e., those nodes which play the most important
communicative role in the network (19). These studies highlight
the aspect that task specific dystonias are network disorders.
Taken together, these studies also illustrate that different methods
of network analyses can provide synergistic knowledge about the
pathophysiological changes in focal dystonias.

Our main objective was to determine whether changes in
the motor network in WC are persistent, that is, whether they
are present even during periods in which no motor symptoms
occur. Therefore, we employed a finger tapping task with the
unaffected left hand in WC patients and included only those
who were not experiencing symptoms during task performance.
As writer’s cramp is a movement disorder affecting skilled hand
motor control, we chose finger tapping as a robust paradigm to
elicit activity in the neural network of hand motor control. By
only involving the non-symptomatic hand, we ensured that the
resulting brain activation reflected underlying, persistent disease-
inherent changes, in contrast to changes brought about by
symptomatic differences in motor outcome. Our working group
has already published two analyses on this data set: In a first
analysis, we were able to show that WC patients have abnormal
grey matter volume in the putamen and globus pallidus, both
bilaterally. Furthermore, functional analysis revealed reduced
activity in the right putamen and left globus pallidus (20).

Interestingly, only basal ganglia abnormalities, but no cerebellar
changes were found. Extending these findings, in a second
analysis we employed a dynamic causal modelling (DCM)
approach to investigate abnormal effective connectivity (11). In
addition to a dysfunctional cortico-basal ganglia motor network,
we also found abnormal connectivity in the cerebello-cortical
motor network. In the current study, we used the same data
set in a graph theoretical network analysis, to investigate firstly,
whether our previous findings can be replicated with another
approach and, secondly, to establish whether there are whole-
brain functional connectivity changes underlyingWC.While our
DCM analysis was restricted to predefined network, this graph-
theoretical approach allows for a holistic, data-driven assessment
of the brain connectivity.

We generated the whole-brain network from functional MRI
(fMRI) data to compare the contributions of different brain areas
to the network function in patients vs. healthy controls. In a
secondary, exploratory analysis (due to small sample size), we
divided our patient group in those with simple writer’s cramp
(SWC), that only affected the hand during writing, and those with
complex writer’s cramp (CWC), which also affected other fine
motor tasks. We then compared their respective networks using
the same methods employed for our primary analysis.

We hypothesized that the functional whole-brain network of
writer’s cramp patients would be altered even in the absence
of motor symptoms. We based this hypothesis on findings of
resting state dystonia research, which report network alterations
when no task was performed during scanning (18, 19), and
on our own research finding network alterations during a
non-symptomatic motor task (11). We also hypothesize that
communication between network modules (i.e., communities
of regions working together) is impaired in WC, because
previous research reporting impairment of motor inhibition
and abnormal sensorimotor integration leads us to believe that
connectivity between regions is altered in WC. Lastly, as our
DCM study revealed dysfunction of the cortico-basal ganglia
motor network and the cerebello-cortical motor network, we
specifically expected abnormal connectivity of the basal ganglia
and the cerebellum.

METHODS

Subjects
A total of 20 WC patients (46.5 ± 13.3 years of age, 11
females/nine males) and 26 healthy controls (49.6 ± 8.8 years
of age, 10 females/16 males) participated in the study. Sixteen
patients and 24 healthy controls of this sample had already been
analyzed in our previous studies (11, 20). Nine patients presented
with simple writer’s cramp (SWC) of their right hand, which
was symptomatic only during writing, while 11 patients were
diagnosed with complex writer’s cramp (CWC), which affected
their right hand also during other fine motor tasks, including
buttoning, using the computer mouse and picking up small
objects. Diagnosis and subtype classification were established
by a neurologist. To this end, the Writer’s Cramp Rating Scale
(21) and the Arm Dystonia Disability Scale (22) as well as
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the patient’s medical history were employed. All participants
were right-handed according to the Edinburgh Handedness
Inventory (23). Exclusion criteria included any neurological or
psychiatric disorders other than writer’s cramp. Musicians and
professional typists were excluded from the study. The last
botulinum toxin injection was performed at least three months
before study inclusion. Clinical characteristics of patients are
shown in Table 1.

Experimental Design
Participants performed a finger tapping task while lying in the
MRI scanner. The task consisted of pressing four keys in a
specific sequence. All participants used their left hand. This
was the non-dominant hand and, for all patients, it was non-
dystonic. Fingers were numbered from 2 to 5, excluding the
thumb and starting with the index finger (position 2) up to the
little finger (position 5). Participants were instructed to perform
the sequence 5–2–4–3–5 repeatedly as quickly and accurately
as possible. Prior to the scan, task understanding was tested
by a few trial sequences. During the scan, the sequence was
displayed visually via a mirror to minimize working memory
load. A trial block consisted of 30 s tapping followed by 30 s
rest. A total of 15 blocks had to be performed. Participants
were fixating on a cross, which turned into a circle for 100ms
after each key press. Key presses were recorded for behavioral
analysis. All patients were observed during task performance
to ensure that no dystonic symptoms, including mirror
movements, occurred.

Behavioral Analysis
Task performance was assessed in terms of correct tapping
sequences and tapping speed (number of taps per block). Two
repeated-measures ANOVA were used, each with one within-
subjects factor (number of blocks) and one between-subjects
factor (group). Statistical significance was determined by a
threshold of p < 0.05 corrected for multiple comparisons by a
Bonferroni correction, yielding p < 0.025.

Image Acquisition and Processing
Images were acquired on a 3T whole-body MRI scanner
(Achieva; Philips, Best, the Netherlands) at the Neurocenter of
the Christian Albrechts University Hospital. An 8-channel head
coil was used. Stimulus presentation and response recording were
achieved via an IFIS system (Invivo, Gainesville, FL). Functional
scans were obtained using a whole-brain echo planar imaging
(EPI) sequence consisting of 360 volumes of 38 slices each.
Axial images were aligned to the anterior-posterior plane. The
following parameters were used: TR = 2500ms, TE = 36.4ms,
slice thickness = 3mm, intersclice gap = 0.3mm, FOV = 216 x
216 x 125.1 mm3, matrix = 64 x 64, flip angle = 90 degree, voxel
size = 3.375 x 3.375 x 3 mm3. Furthermore, each participant
received a 3D T1-weighted gradient echo structural MRI scan
with sagittal volume excitation. The following parameters were
used: TR= 7.8ms, TE= 3.6ms, TI = 800ms, FOV= 160 x 240 x
240 mm3, matrix= 256 x 256, flip angle= 8 degree, slices= 160,
voxel size= 1 x 0.94 x 0.94 mm3.

Data preprocessing was performed using a standard AFNI
imaging preprocessing pipeline. For this, afni_proc.py was used
to generate preprocessing scripts that were consistent between
all subjects. The scripts included the following blocks: despike,
tshift, align, volreg, blur, mask, and scale. Thereby, EPI scans
were despiked using AFNI’s 3dDespike with standard settings.
They were slice time corrected using a Fourier interpolation.
Then, scans were registered to the first volume and normalized to
Taillarach space. After spatial smoothing using a 4-mm Gaussian
kernel, the voxel time series were scaled such that their mean
was set to 100 (this is achieved by the afni_proc.py -scale block
and allows for better comparability of time series between scans).
Volumes containing differential movement >0.5mm per TR
were censored during subsequent analysis steps, meaning they
were removed from the data set. No interpolation was applied.
The scaled files were fed into the network analysis.

Functional Network Construction
The network construction pipeline employed here was adapted
from Fuertinger et al. (24) and Fuertinger and Simonyan (17).

TABLE 1 | Participant demographics.

Controls Patients p

All SWC CWC Patients vs. Controls SWC vs. CWC

Number of participants 26 20 9 11 - -

Gender (female/male) 10/16 11/9 5/4 6/5 0.264 0.964

Age (y, mean ±SD) 49.6 ± 8.8 46.5 ± 13.3 45.6 ± 15.2 47.2 ± 12.3 0.371 0.794

Handedness Right Right Right Right - -

Symptom duration (y, mean ± SD) n.a. 13.2 ± 8.9 9.1 ± 6.6 16.6 ± 9.4 - 0.060

BoNT treatment (yes/no)* n.a. 11/9 4/5 7/4 -

Last BoNT injection (months, mean ± SD)** n.a. 36.5 ± 34.3 20.8 ± 26.6 45.4 ± 39.3 - 0.297

WCRS score (mean ± SD) n.a. 10.9 ±5.5 10.2 ± 5.2 11.4 ± 5.8 - 0.654

ADDS score (mean ± SD) n.a. 61.1 ± 12.9 66.7 ± 10.3 56.6 ± 13.5 - 0.083

P-values were computed via independent t-tests, except for gender (chi-squared test). ADDS, Arm Dystonia Disability Scale; WCRS, Writer’s Cramp Rating Scale; n.a., not applicable.

*Last injection was at least 3 months before study date.

**Only for those patients that had received BoNT treatment.
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Codes were written in Python using the open-source libraries
NumPy (25), SciPy (26) and Matplotlib (27).

The cytoarchitectonic maximum probability maps and
macrolabel atlas (24, 28) was used to parcellate the whole
brain into 212 regions of interest (ROIs). Thereby, 142 cortical,
36 subcortical and 34 cerebellar regions were included in the
analysis. Voxelwise-averaged time series of the task-production
fMRI were computed for every ROI in all participants. Only
volumes acquired during the tapping blocks were used during
subsequent steps. Pairwise regional interactions were calculated
as normalized mutual information (NMI) coefficients. As
described previously (17), NMI coefficients preserve the non-
zero structure of the widely used pairwise Pearson correlation
matrix but come with the advantage of non-negativity of all
interactions. The NMI coefficients were obtained by dividing
the classical mutual information (29) of two regions by the
geometric mean of the associated Shannon entropies (30). This
provides a statistical dependence measure scaled to the interval
[0, 1], with 0 indicating statistical independence and 1 indication
mutual dependence.

For each subject, a 212 x 212 whole-brain NMI matrix
was computed and subsequently used to construct a weighted
undirected graph, where ROIs acted as nodes and the NMI values
provided the edge weights. Thereby, each graph represented the
whole brain of a participant. For each graph, network density
was calculated as the number of present edges (non-zero NMI)
divided by the number of possible edges in the graph. All
networks had a 100% density and were therefore thresholded.
As very dense networks (density > 50%) tend towards random
graph characteristics (31, 32), all networks were thresholded to
50% by iteratively removing (i.e.; setting to zero) the weakest
edges of the graph until 50% density was reached. As a last
step, nodes with fewer than 5% of all possible connections were
also removed, as these were only sparsely connected and likely
to be noise artifacts. Nodes that became thereby disconnected
(i.e., nodes with all edges removed) were excluded from further
analysis. Reduced individual graphs were computed for each
group, which contained only nodes that were present in all
subjects of that group. Then, a group-averaged network was
computed for each group, yielding four networks (control and
WC in the main analysis; and SWC and CWC in the secondary
analysis). As these reduced networks again had a density of 100%,
they were thresholded again to 50% (no nodes were disconnected
in this last step). This thresholding approach (i.e.; the nodal
elimination) resulted in networks with different network spaces
for each group. We argue that these differences reflect disease-
inherent changes in network function and therefore warrant
interpretation. The network metrics investigated in this study
are not affected by the nodal elimination approach, as they do
not rely on the number of network nodes. They are, however,
influenced by the network’s density, which was adjusted to the
same 50% in all groups.

Graph Theoretical and Statistical Analysis
Network processing and visualization was programmed
in Python, while the computation of optimal modular
decompositions and network metrics was performed using

MATLAB (The MathWorks, Inc.) and the Brain Connectivity
Toolbox (33). BrainNet Viewer (34) was employed to generate
3D network images embedded in reference brain models.

Network Metrics

Four network metrics were computed: nodal degree, nodal
strength, clustering coefficient and global efficiency. Nodal degree
was calculated as the number of edges connected to a node.
Nodal strength refers to the sum of the weights of all edges
connected to a node. To ensure comparability between networks
of different network spaces, both nodal degree and strength were
normalized by dividing them by the number of nodes in the
network. The clustering coefficient served as a measure of nodal
segregation, as it illustrates the presence of functional cliques in
a node’s local neighborhood. The clustering coefficient is defined
as the geometric mean of weights in triangles around the node.
Network integration, on the other hand, was measured by means
of global network efficiency, which is calculated as the average
inverse shortest path length in the network. Inverse edge weights
were used as connections lengths. A two-tailed non-parametric
permutation t-test with 20,000 Monte Carlo randomizations
was used to assess statistical significance of differences in
these metrics between two groups (p < 0.05 corrected for
multiple comparisons by a Bonferroni correction, yielding p <

0.0025). Permutation tests were the method of choice as they
do not require assumptions concerning the distribution of the
measure under investigation. Their only assumption is that the
observations are independent, which was the case in this study.

Optimal Modular Decomposition

A graph community analysis was carried out to assess the
global reconfiguration of the functional networks in different
groups. An optimal modular decomposition divides a graph
into non-overlapping groups of connected nodes, such that
the number of within-module edges is maximized and the
number of between-module edges is minimized. For each
graph, the optimal modular decomposition was estimated by
maximizing the Newman modularity (35). For this, a heuristic
optimization strategy was employed that utilized the Kernighan-
Lin algorithm (36). In the first step, each node was assigned its
own module. This decomposition was then refined by employing
the modularity maximization algorithm one-hundred times,
which also accounted for the randomness of the approach
(24). Based on the average nodal module assignment, the final
modular decomposition was computed. Node 1 always served as
reference to account for differences in module numbering due to
randomness. Similarity of decompositions between groups was
estimated using their partition distances (pd), which illustrate
the normalized variation of information between two community
affiliation vectors (37). Again, a non-parametric permutation
t test was used to assess group differences. In a next step,
the networks’ spatial community structure and hub formation
were compared.

Hub Formation

Any node with both degree and strength at least one standard
deviation above the network’s mean respective metric was
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considered a hub. Nodes that did not fulfill this criterion
but were among the top 30% for both their strength
and degree were considered as high-influence nodes. To
distinguish between connector hubs (nodes connecting different
communities) and provincial hubs (nodes connecting nodes
within one community), the nodal participation coefficient pci
was calculated (17, 38). The pci resembles the distribution of
inter- vs. intra-module connections and is maximized when
a node’s edges are evenly distributed between the networks
modules. Hubs with at least 90% of the theoretical maximum
pci value of a network were considered as connector hubs,
all remaining hubs were classified as provincial hubs. Hubs
were assessed qualitatively for their number and spatial
distribution within each network. Results will be reported in
a descriptive manner, as the hub analysis does not allow for
statistical testing.

RESULTS

Task Performance
There were no significant differences between groups in the total
number of taps per block [F(1,30) = 0.774, p = 0.38] and the
number of correctly tapped sequences [F(1,30) = 1.045, p= 0.31].
Both groups improved over time in both measures [total taps:
F(4,434) = 36.861, p < 0.001; correct taps: F(6,434) = 16.165, p
< 0.001, Supplementary Figure 1]. Patients were asked whether
they experienced dystonic symptoms during scanning, which
they denied.

Neural Network Analysis
The thresholding approach revealed that in the control network,
156 of 212 regions contributed to the network (i.e., were
connected to at least one other node). For WC patients, this
was true for 131 nodes. Within the overall WC group, the
SWC network had 166 nodes, compared to 154 nodes in the
CWC network.

Controls vs. Patients

Network Metrics

The permutation test showed a significant difference in mean
clustering coefficient (Controls: 0.12 ± 0.02, WC Patients: 0.14
± 0.02, p ≤ 0.00005) but not in mean nodal degree (Controls:
0.50± 0.17, Patients: 0.50± 0.18, p= 0.88), mean nodal strength
(Controls: 0.08 ± 0.03, Patients: 0.09 ± 0.04, p = 0.07) or
global efficiency (Controls: 0.15 ± 0.03, Patients: 0.16 ± 0.08,
p= 0.46).

Hub Formation

Both control and WC patient networks had an optimal modular
decomposition comprised of threemodules: One fronto-occipital
community, which also included cerebellar nodes, one parietal
community and one subcortical community (Figure 1A). As the
control network had a higher total number of nodes (N = 156),
its fronto-occipital and parietal modules included more nodes
than those of the patient network. Modularization as measured

by the partition distance pd was significantly different between
groups (pd = 0.312, p < 0.0001).

Differences in hub formation included different utilization of
hubs (connector vs. provincial), loss of hubs (degradation to high
influence nodes or even absence of the node), or formation of
new hubs.

While the number of hubs was similar in the control and
the patient network (21 vs. 22), the control network contained
fewer connector hubs (13 vs. 20). Notably, patients had only two
provincial hubs, while controls had eight (Figure 1B). Patients
showed a five-fold decrease in the number of high-influence
nodes found in the control network (24 in controls vs. 5 in
patients). Abnormal hub formation in WC patients included the
cingulate gyrus, thalamus, and cerebellum.

Connector hubs that appeared in both patients and controls
(i.e., shared connector hubs) were found in the cerebellar lobules
V (left) and VI (bilateral) as well as in the left parietal and
prefrontal subdivisions of thalamus, lingual gyrus (bilateral), and
the right precuneus. Right Brodmann area (BA) 6 was the only
shared provincial hub. Controls employed as connector hubs the
left cerebellar lobule VIIIa (vermis), areas TE1.1 and hOC4v and
the right parietal and prefrontal subdivisions of thalamus, which,
however, did not reach hub status in the patient network. The
patient network, on the other hand, employed connector hubs
in left primary motor cortex, caudate nucleus, middle occipital
gyrus, precuneus, right primary motor cortex, cerebellar lobule
V, bilateral middle and posterior cingulate gyrus and temporal
subdivision of thalamus. The control network included more
provincial hubs (Figure 1B), some of which did not reach the
hub status in WC network or were not even included in the
network (Figure 2). However, some regions that were provincial
hubs in the control network advanced to connector hubs in the
patient network (left BA 4, precuneus, middle cingulate cortex).
Two regions to note were nodes that were connector hubs in one
network but not even included as nodes in the other network,
namely the left cerebellar module VIIIa vermis (connector hub
in the control network) and middle cingulate cortex (connector
hub in the patient network), as shown in Figure 2.

Simple vs. Complex Writer’s Cramp

Network Metrics

There was a significant difference in mean clustering coefficient
in the CWC and SWC networks (CWC: 0.14 ± 0.02, SWC: 0.13
± 0.02, p ≤ 0.00005), but not in mean nodal degree (CWC: 0.50
± 0.19, SWC: 0.50± 0.18, p= 0.97), mean nodal strength (CWC:
0.09 ± 0.04, SWC: 0.09 ± 0.04, p = 0.22) or global efficiency
(CWC: 0.16± 0.08, SWC: 0.16± 0.07, p= 0.75).

Hub Formation

Splitting the patient group into two subgroups (complex vs.
simple writer’s cramp) showed distinct differences between
their networks. In the SWC network, the subcortical module
was far more spread out and included all cerebellar nodes
(Figure 3A), which were part of the fronto-occipital network
in all other groups. Modularization was significantly different
between CWC and SWC (pd = 0.337, p < 0.0001). Moreover,
both CWC and SWC networks showed significantly different

Frontiers in Neurology | www.frontiersin.org 5 November 2021 | Volume 12 | Article 744503

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Schill et al. Functional Networks in Writer’s Cramp

FIGURE 1 | Network analysis results for control subjects (left) and patients (right). (A) The optimal modular decomposition is shown by colored nodes in a 3D glass

brain. Both groups had three modules: a fronto-occipital module (blue), a parietal module (green) and a subcortical module (brown). The size of each node indicates its

hub status, from largest to smallest: connector hubs, provincial hubs, high influence nodes, other nodes. In both groups, hub formation was mostly restricted to the

posterior part of the brain. (B) Hubs per module. All regions that were either hubs or high influence nodes are presented as colored nodes. Color illustrated module

affiliation (as in A). Nodes are arranged in three circles according to their hub status: connector hubs (innermost circle), provincial hubs (intermediate circle) and high

influence nodes (outer circle). Controls recruited nearly the same number of hubs as patients, but these hubs communicated with more high influence nodes. 1/3b/6,

BAs 1/3b/6; 4a, anterior part of BA 4; 5L/5M, subdivisions of BA 5; 7A/7M/7P, subdivisions of BA 7; Cbl V/VI/VIv/VIIbv/VIIIav/IX, cerebellar lobules V/VI/VI vermis/VIIb

vermis/VIIIa vermis/IX; Cd, caudate nucleus; FG, fusiform gyrus; HipCA, subdivision of the hippocampus; hOC4v, ventral part of area hOC4; IOG/MOG, inferior/middle

occipital gyrus; lg1, insular subdivision lg1; LG, lingual gyrus; MCC/PCC, middle/posterior cingulate cortex; MFG, middle frontal gyrus; MTG, middle temporal gyrus;

PCu, precuneus; PF/PFcm/PFm, areas PF/PFcm/PFm in the inferior parietal cortex; TE1.1, area TE1.1; Tp/Tpf/Tt, parietal/prefrontal/temporal subdivision of the

thalamus; L, left; R, right.

modularization than the control network. Interestingly, the
partition distance to the control network was larger for the
SWC (pd = 0.347, p < 0.0001) than for the CWC (pd = 0.303,
p < 0.0001).

Hub characteristics were also different for these networks
(Figure 3B). While the SWC network had more hubs (30

vs. 25), the amount of connector hubs was nearly identical
(SWC: 16; CWC: 17). The SWC network had more than three
times as many high influence nodes as the CWC network
(13 vs. 4).

There were 10 shared connector hubs, including bilateral
lingual gyrus, the temporal subdivision of thalamus, cerebellar
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FIGURE 2 | Hub characteristics of the control (left) and the patient network (right). The graph shows all nodes that were recruited as hubs in either of the two

networks. For each hub, normalized nodal degree (light grey) and normalized nodal strength (dark grey) are indicated by bars. White circles denote nodes that were

not hubs in the respective network, absence of circles denotes that the node was not present in the respective network. Red circles denote connector hubs, yellow

circles denote provincial hubs. 1/6, BAs 1/6; 4a, anterior part of BA 4; 5M, subdivisions of BA 5; Cbl V/VI/VIIIav, cerebellar lobules V/VI/VIIIa vermis; Cd, caudate

nucleus; FG, fusiform gyrus; hOC4v, ventral part of area hOC4; MOG, middle occipital gyrus; LG, lingual gyrus; MCC/PCC, middle/posterior cingulate cortex; PCu,

precuneus; PF, area PF in the inferior parietal cortex; TE1.1, area TE1.1; Tp/Tpf/Tt, parietal/prefrontal/temporal subdivision of the thalamus; L, left; R, right.

lobule VI, left posterior cingulate gyrus, caudate nucleus,
right middle cingulate gyrus and cerebellar lobule V
(Figure 4). The left middle cingulate gyrus was the only shared
provincial hub.

DISCUSSION

In this study, we employed graph theoretical analysis to
characterize functional network changes in WC patients during
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FIGURE 3 | Network analysis results for simple (left) and complex (right) writer’s cramp subgroups. (A) The optimal modular decomposition is shown by colored

nodes in a 3D glass brain. Both groups had three modules: a fronto-occipital module (blue), a parietal module (green), and a subcortical module (brown). The

subcortical module was larger in the SWC group, spreading into the cerebellum. The size of each node indicates its hub status, from largest to smallest: connector

hubs, provincial hubs, high influence nodes, other nodes. Hub distribution in both groups was mostly restricted to the posterior part of the brain. (B) Hubs per module.

All regions that were either hubs or high influence nodes are presented as colored nodes. Color illustrated module affiliation (as in A). Nodes are arranged in three

circles according to their hub status: connector hubs (innermost circle), provincial hubs (intermediate circle) and high influence nodes (outer circle). Both groups

recruited nearly the same number of connector hubs, but the SWC group’s network contained more provincial hubs and high influence nodes. 3a/3b/6, BAs 3a/3b/6;

4a/4p, anterior/posterior part of BA 4; 5Ci/5L/5M, subdivisions of BA 5; 7A/7PC, subdivisions of BA 7; Cbl V/VI/VIv/VIIa crus II/VIIb/VIIIa/VIIIav/VIIIbv/IX/IXv, cerebellar

lobules V/VI/VI vermis/VIIa crus II/VIIb/VIIIa/VIIIa vermis/VIIIb vermis/IX/IX vermis; Cd, caudate nucleus; HipCA, subdivision of the hippocampus; hlP1, intraparietal

sulcus subdivision hlP1; hOC4v, ventral part of area hOC4; LG, lingual gyrus; MCC/PCC, middle/posterior cingulate cortex; MOG, middle occipital gyrus; PCu,

precuneus; SOG, superior orbital gyrus; Tp/Tpf/Tpm/Tt/Tv, parietal/prefrontal/premotor/temporal/visual subdivision of the thalamus; L, left; R, right.

production of a finger-tapping task with the non-dystonic
hand. Thus, we were able to investigate underlying changes in
functional connectivity inWC that were not influenced by motor
task performance. Our results show that, while patients exhibited
an optimal modular decomposition of their neural network
similar to that of healthy controls, topological differences were
found in the recruitment of brain regions and in the manner
these regions contribute to the network (i.e., act as relays
between modules or propagate information within one module).
Distinct differences could be observed in thalamic and cerebellar
function and the recruitment of primary motor cortex. In a

secondary analysis, we compared the functional connectivity
between simple vs. complex WC and found that the network
in SCW patients recruited an abnormally large number of
cerebellar regions.

Network Metrics
Our nodal elimination strategy allowed us to investigate
whether the WC network recruited different brain regions
compared to healthy controls. Indeed, we showed that WC
patients exhibited a reduced number of regions contributing
to the network. Global efficiency did not differ significantly
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FIGURE 4 | Hub characteristics of the simple (left) and complex (right) writer’s cramp networks. The graph shows all nodes that were recruited as hubs in either of

the two networks. For each hub, normalized nodal degree (light grey) and normalized nodal strength (dark grey) are indicated by bars. White circles denote nodes that

were not hubs in the respective network, absence of circles denotes that the node was not present in the respective network. Red circles denote connector hubs,

yellow circles denote provincial hubs. 6, BA 6; 4a, anterior part of BA 4; 5Ci/5L/5M, subdivisions of BA 5; Cbl V/VI/VIv/VIIaCr2/VIIb/VIIIa/VIIIav/VIIIbv/IX, cerebellar

lobules V/VI/VI vermis/VIIa crus II/VIIb/VIIIa/VIIIa vermis/VIIIb vermis/IX; Cd, caudate nucleus; hOC4v, ventral part of area hOC4; LG, lingual gyrus; MCC/PCC,

middle/posterior cingulate cortex; MOG, middle occipital gyrus; PCu, precuneus; SOG, superior orbital gyrus; Tp/Tpf/Tt, parietal/prefrontal/temporal/ subdivision of

the thalamus; L, left; R, right.

between the two networks, indicating that the rerouting within
the patient network did not impair the networks ability to
process information. Furthermore, mean nodal degree and

mean nodal strength did not significantly differ between
groups. This might be an inherent consequence of the nodal
elimination strategy, as both these metrics are influenced by the
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removal of the weakest connections. The network’s clustering
coefficient was significantly larger in patients, indicating that
the patient network’s nodes had a higher tendency to form
functional clusters. It seems that in the patients’ network
information processing was achieved in a more discretely
structured way.

Modularization and Hub Characteristics
The optimal modular decomposition differed between groups
and communication within and between modules was changed
in the patient network. The increased number of connector
hubs in the patient network indicates increased intermodular
communication. This means that activity in a module influences
activity in the other modules in an abnormal way. The design
of the current analysis does not enable us to say whether this
abnormal communication pattern is caused by the disorder or is
a manifestation of compensatory mechanisms trying to make up
for lost function of a module.

The analysis revealed three interesting findings that we
discuss further:

First, the primary motor cortex changed its status as a
provincial hub in the control network to connector hub in
the patient network. Therefore, activity in the primary motor
area in the patient network more strongly influenced network-
wide connections. This is in line with previous investigations
of the same data set, which have shown reduced inhibition of
the primary motor area with simultaneous increased output
to areas such as the cerebellum and the supplementary motor
area (11). A similar change of hub status was reported for the
primary motor cortex in hand dystonia (including WC and
musicians focal hand dystonia) (19). In an EEG study, WC
patients exhibited disruption of intracortical inhibition during a
writing-from memory task (39). While EEG does not have the
spatial resolution to pinpoint this finding to the primary motor
cortex, it supports the notion that inhibitory connections are
impaired in WC.

Second, cerebellar recruitment was reduced in the patient
network to only two-third of the control network’s recruitment.
This indicates cerebellar dysfunction, which is in line with
previous research on cerebellar involvement in dystonia (40–47).
Previous resting-state research on task specific focal dystonias,
including WC, has shown abnormal cerebellar integration
(18): While healthy participants were found to have a single,
highly integrated module comprising the basal ganglia and the
cerebellum, patients had multiple separate modules instead.
The authors believe this sign of altered functional interaction
between the basal ganglia and the cerebellum to be the base
for further network abnormalities and the development of
dystonic symptoms. Furthermore, Fuertinger and Simonyan
(17) found task-related altered cerebellar function in patients
with laryngeal dystonia. Similar to the study on task specific
focal dystonias, they report a breakdown of the healthy basal
ganglia-cerebellar module into separate modules in patients.
Taken together, this indicates that the cerebellum might play
a crucial part in the common pathophysiology of task-specific
dystonia. Furthermore, in a lesion network mapping study, it
was shown that while not all lesions causing cervical dystonia are

located in the cerebellum, they are all located within a cerebellar
network (48).

Last, the thalamus featured a large number of connector hubs
in both control and patient networks, but while in the control
network this was a bilateral pattern, in the patient network the
left hemispheric thalamus was more prominent. Fuertinger and
Simonyan (17) have shown abnormal functional integration of
the thalamus in patients with laryngeal dystonia. They report
the left thalamus to act as a transmitter to the basal ganglia
in dystonic patients. The left thalamus was also found to play
a greater communicative role in task-specific focal dystonia
patients: Their network included the left thalamus as a connector
hub, which was not the case for the healthy control network.
It has been shown that the thalamus acts as a relay station
between other brain regions and plays a role in integrating
information across cortical networks (49–51). As the thalamus
passes information from the cerebellum and the basal ganglia to
the motor cortex (52), abnormal thalamic recruitment might be
a disorder-promoting network change.

Simple vs. Complex Writer’s Cramp:
Preliminary Results
In an exploratory analysis due to low number of patients in
each group, we investigated differences between the networks
of patients with simple vs. complex WC. Only the mean
clustering coefficient differed between these groups, showing that
patients with CWC had a more segregated network. Modular
decomposition indicated that nodal interaction differs in SWC
and CWC from the normal state, and that the difference is
more pronounced in the SWC group. In the complex form
of the disease, when patients have developed problems in
other fine motor tasks, the optimal modular decomposition
is more similar to that of controls. One possible explanation
is that increased activity and connectivity in early disease
stages could be a manifestation of compensatory mechanisms.
We argue that since cerebellar activity is increased in simple
writer’s cramp, when patients have less diverse symptoms, and
decreases in complex writer’s cramp, when symptoms spread,
that this early increase of activity could be compensatory. In
the advanced stage of the disease, this compensatory activity
decreases and more wide-spread symptoms occur. The finding
that the cerebellar recruitment is increased in SWC (as shown
by the increased numbers of provincial and connector hubs
in the cerebellum) but not in CWC supports this assumption.
However, in our study we did not investigate longitudinal
data. Therefore, our findings are only indicative and do
not provide proof of this interpretation. We suggest further
research in this direction, including a larger patient sample
to be studied longitudinally. Thereby, the effects of disease
progression (leading from simple to complexWC) could be more
directly assessed.

CONCLUSION

Our graph theoretical analysis of the functional brain networks
of WC patients demonstrated several changes in network
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functionality as compared to healthy controls. By analyzing
whole-brain networks we were able to show that information
processing is achieved in a more discretely structured way
in WC patients. Furthermore, our hub analysis revealed
abnormal connectivity of three key regions, which have been
previously reported as sites of dystonia related alterations:
The primary motor cortex influence on other regions was
increased in WC patients, suggesting a lack of inhibition.
The cerebellum was less connected than in healthy controls,
indicating cerebellar dysfunction. Lastly, thalamic recruitment
was more left-lateralized in patients, which could lead to
alterations in how information is relayed from the cerebellum
and the basal ganglia to the motor cortex. As we employed a
paradigm that did not invoke dystonic symptoms in patients,
we have shown that the patients’ functional connectivity
is changed even in the absence of symptoms. Therefore,
dystonia seems to cause persistent changes in the whole-brain
functional network.
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