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Dystonia, a debilitating neurological movement disorder, is characterized by involuntary

muscle contractions and develops from a complex pathophysiology. Graph theoretical

analysis approaches have been employed to investigate functional network changes in

patients with different forms of dystonia. In this study, we aimed to characterize the

abnormal brain connectivity underlying writer’s cramp, a focal hand dystonia. To this

end, we examined functional magnetic resonance scans of 20 writer’s cramp patients

(11 females/nine males) and 26 healthy controls (10 females/16 males) performing a

sequential finger tapping task with their non-dominant (and for patients non-dystonic)

hand. Functional connectivity matrices were used to determine group averaged brain

networks. Our data suggest that in their neuronal network writer’s cramp patients

recruited fewer regions that were functionally more segregated. However, this did

not impair the network’s efficiency for information transfer. A hub analysis revealed

alterations in communication patterns of the primary motor cortex, the thalamus and

the cerebellum. As we did not observe any differences in motor outcome between

groups, we assume that these network changes constitute compensatory rerouting

within the patient network. In a secondary analysis, we compared patients with simple

writer’s cramp (only affecting the hand while writing) and those with complex writer’s

cramp (affecting the hand also during other fine motor tasks). We found abnormal

cerebellar connectivity in the simple writer’s cramp group, which was less prominent

in complex writer’s cramp. Our preliminary findings suggest that longitudinal research

concerning cerebellar connectivity during WC progression could provide insight on early

compensatory mechanisms in WC.

Keywords: writer’s cramp, functional magnetic resonance imaging (fMRI), functional brain connectivity,
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FIGURE 3 | Network analysis results for simple (left) and complex (right) writer’s cramp subgroups. (A) The optimal modular decomposition is shown by colored

nodes in a 3D glass brain. Both groups had three modules: a fronto-occipital module (blue), a parietal module (green), and a subcortical module (brown). The

subcortical module was larger in the SWC group, spreading into the cerebellum. The size of each node indicates its hub status, from largest to smallest: connector

hubs, provincial hubs, high influence nodes, other nodes. Hub distribution in both groups was mostly restricted to the posterior part of the brain. (B) Hubs per module.

All regions that were either hubs or high influence nodes are presented as colored nodes. Color illustrated module affiliation (as in A). Nodes are arranged in three

circles according to their hub status: connector hubs (innermost circle), provincial hubs (intermediate circle) and high influence nodes (outer circle). Both groups

recruited nearly the same number of connector hubs, but the SWC group’s network contained more provincial hubs and high influence nodes. 3a/3b/6, BAs 3a/3b/6;

4a/4p, anterior/posterior part of BA 4; 5Ci/5L/5M, subdivisions of BA 5; 7A/7PC, subdivisions of BA 7; Cbl V/VI/VIv/VIIa crus II/VIIb/VIIIa/VIIIav/VIIIbv/IX/IXv, cerebellar

lobules V/VI/VI vermis/VIIa crus II/VIIb/VIIIa/VIIIa vermis/VIIIb vermis/IX/IX vermis; Cd, caudate nucleus; HipCA, subdivision of the hippocampus; hlP1, intraparietal

sulcus subdivision hlP1; hOC4v, ventral part of area hOC4; LG, lingual gyrus; MCC/PCC, middle/posterior cingulate cortex; MOG, middle occipital gyrus; PCu,

precuneus; SOG, superior orbital gyrus; Tp/Tpf/Tpm/Tt/Tv, parietal/prefrontal/premotor/temporal/visual subdivision of the thalamus; L, left; R, right.

production of a finger-tapping task with the non-dystonic
hand. Thus, we were able to investigate underlying changes in
functional connectivity inWC that were not influenced by motor
task performance. Our results show that, while patients exhibited
an optimal modular decomposition of their neural network
similar to that of healthy controls, topological differences were
found in the recruitment of brain regions and in the manner
these regions contribute to the network (i.e., act as relays
between modules or propagate information within one module).
Distinct differences could be observed in thalamic and cerebellar
function and the recruitment of primary motor cortex. In a

secondary analysis, we compared the functional connectivity
between simple vs. complex WC and found that the network
in SCW patients recruited an abnormally large number of
cerebellar regions.

Network Metrics
Our nodal elimination strategy allowed us to investigate
whether the WC network recruited different brain regions
compared to healthy controls. Indeed, we showed that WC
patients exhibited a reduced number of regions contributing
to the network. Global efficiency did not differ significantly
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FIGURE 4 | Hub characteristics of the simple (left) and complex (right) writer’s cramp networks. The graph shows all nodes that were recruited as hubs in either of

the two networks. For each hub, normalized nodal degree (light grey) and normalized nodal strength (dark grey) are indicated by bars. White circles denote nodes that

were not hubs in the respective network, absence of circles denotes that the node was not present in the respective network. Red circles denote connector hubs,

yellow circles denote provincial hubs. 6, BA 6; 4a, anterior part of BA 4; 5Ci/5L/5M, subdivisions of BA 5; Cbl V/VI/VIv/VIIaCr2/VIIb/VIIIa/VIIIav/VIIIbv/IX, cerebellar

lobules V/VI/VI vermis/VIIa crus II/VIIb/VIIIa/VIIIa vermis/VIIIb vermis/IX; Cd, caudate nucleus; hOC4v, ventral part of area hOC4; LG, lingual gyrus; MCC/PCC,

middle/posterior cingulate cortex; MOG, middle occipital gyrus; PCu, precuneus; SOG, superior orbital gyrus; Tp/Tpf/Tt, parietal/prefrontal/temporal/ subdivision of

the thalamus; L, left; R, right.

between the two networks, indicating that the rerouting within
the patient network did not impair the networks ability to
process information. Furthermore, mean nodal degree and

mean nodal strength did not significantly differ between
groups. This might be an inherent consequence of the nodal
elimination strategy, as both these metrics are influenced by the
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removal of the weakest connections. The network’s clustering
coefficient was significantly larger in patients, indicating that
the patient network’s nodes had a higher tendency to form
functional clusters. It seems that in the patients’ network
information processing was achieved in a more discretely
structured way.

Modularization and Hub Characteristics
The optimal modular decomposition differed between groups
and communication within and between modules was changed
in the patient network. The increased number of connector
hubs in the patient network indicates increased intermodular
communication. This means that activity in a module influences
activity in the other modules in an abnormal way. The design
of the current analysis does not enable us to say whether this
abnormal communication pattern is caused by the disorder or is
a manifestation of compensatory mechanisms trying to make up
for lost function of a module.

The analysis revealed three interesting findings that we
discuss further:

First, the primary motor cortex changed its status as a
provincial hub in the control network to connector hub in
the patient network. Therefore, activity in the primary motor
area in the patient network more strongly influenced network-
wide connections. This is in line with previous investigations
of the same data set, which have shown reduced inhibition of
the primary motor area with simultaneous increased output
to areas such as the cerebellum and the supplementary motor
area (11). A similar change of hub status was reported for the
primary motor cortex in hand dystonia (including WC and
musicians focal hand dystonia) (19). In an EEG study, WC
patients exhibited disruption of intracortical inhibition during a
writing-from memory task (39). While EEG does not have the
spatial resolution to pinpoint this finding to the primary motor
cortex, it supports the notion that inhibitory connections are
impaired in WC.

Second, cerebellar recruitment was reduced in the patient
network to only two-third of the control network’s recruitment.
This indicates cerebellar dysfunction, which is in line with
previous research on cerebellar involvement in dystonia (40–47).
Previous resting-state research on task specific focal dystonias,
including WC, has shown abnormal cerebellar integration
(18): While healthy participants were found to have a single,
highly integrated module comprising the basal ganglia and the
cerebellum, patients had multiple separate modules instead.
The authors believe this sign of altered functional interaction
between the basal ganglia and the cerebellum to be the base
for further network abnormalities and the development of
dystonic symptoms. Furthermore, Fuertinger and Simonyan
(17) found task-related altered cerebellar function in patients
with laryngeal dystonia. Similar to the study on task specific
focal dystonias, they report a breakdown of the healthy basal
ganglia-cerebellar module into separate modules in patients.
Taken together, this indicates that the cerebellum might play
a crucial part in the common pathophysiology of task-specific
dystonia. Furthermore, in a lesion network mapping study, it
was shown that while not all lesions causing cervical dystonia are

located in the cerebellum, they are all located within a cerebellar
network (48).

Last, the thalamus featured a large number of connector hubs
in both control and patient networks, but while in the control
network this was a bilateral pattern, in the patient network the
left hemispheric thalamus was more prominent. Fuertinger and
Simonyan (17) have shown abnormal functional integration of
the thalamus in patients with laryngeal dystonia. They report
the left thalamus to act as a transmitter to the basal ganglia
in dystonic patients. The left thalamus was also found to play
a greater communicative role in task-specific focal dystonia
patients: Their network included the left thalamus as a connector
hub, which was not the case for the healthy control network.
It has been shown that the thalamus acts as a relay station
between other brain regions and plays a role in integrating
information across cortical networks (49–51). As the thalamus
passes information from the cerebellum and the basal ganglia to
the motor cortex (52), abnormal thalamic recruitment might be
a disorder-promoting network change.

Simple vs. Complex Writer’s Cramp:
Preliminary Results
In an exploratory analysis due to low number of patients in
each group, we investigated differences between the networks
of patients with simple vs. complex WC. Only the mean
clustering coefficient differed between these groups, showing that
patients with CWC had a more segregated network. Modular
decomposition indicated that nodal interaction differs in SWC
and CWC from the normal state, and that the difference is
more pronounced in the SWC group. In the complex form
of the disease, when patients have developed problems in
other fine motor tasks, the optimal modular decomposition
is more similar to that of controls. One possible explanation
is that increased activity and connectivity in early disease
stages could be a manifestation of compensatory mechanisms.
We argue that since cerebellar activity is increased in simple
writer’s cramp, when patients have less diverse symptoms, and
decreases in complex writer’s cramp, when symptoms spread,
that this early increase of activity could be compensatory. In
the advanced stage of the disease, this compensatory activity
decreases and more wide-spread symptoms occur. The finding
that the cerebellar recruitment is increased in SWC (as shown
by the increased numbers of provincial and connector hubs
in the cerebellum) but not in CWC supports this assumption.
However, in our study we did not investigate longitudinal
data. Therefore, our findings are only indicative and do
not provide proof of this interpretation. We suggest further
research in this direction, including a larger patient sample
to be studied longitudinally. Thereby, the effects of disease
progression (leading from simple to complexWC) could be more
directly assessed.

CONCLUSION

Our graph theoretical analysis of the functional brain networks
of WC patients demonstrated several changes in network
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functionality as compared to healthy controls. By analyzing
whole-brain networks we were able to show that information
processing is achieved in a more discretely structured way
in WC patients. Furthermore, our hub analysis revealed
abnormal connectivity of three key regions, which have been
previously reported as sites of dystonia related alterations:
The primary motor cortex influence on other regions was
increased in WC patients, suggesting a lack of inhibition.
The cerebellum was less connected than in healthy controls,
indicating cerebellar dysfunction. Lastly, thalamic recruitment
was more left-lateralized in patients, which could lead to
alterations in how information is relayed from the cerebellum
and the basal ganglia to the motor cortex. As we employed a
paradigm that did not invoke dystonic symptoms in patients,
we have shown that the patients’ functional connectivity
is changed even in the absence of symptoms. Therefore,
dystonia seems to cause persistent changes in the whole-brain
functional network.
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