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Objective: Our ability to speak is complex, and the role of the central nervous system in controlling speech production
is often overlooked in the field of otolaryngology. In this brief review, we present an integrated overview of speech production
with a focus on the role of central nervous system. The role of central control of voice production is then further discussed in
relation to the potential pathophysiology of spasmodic dysphonia (SD).

Data Sources: Peer-review articles on central laryngeal control and SD were identified from PUBMED search. Selected
articles were augmented with designated relevant publications.

Review Methods: Publications that discussed central and peripheral nervous system control of voice production and
the central pathophysiology of laryngeal dystonia were chosen.

Results: Our ability to speak is regulated by specialized complex mechanisms coordinated by high-level cortical
signaling, brainstem reflexes, peripheral nerves, muscles, and mucosal actions. Recent studies suggest that SD results from a pri-
mary central disturbance associated with dysfunction at our highest levels of central voice control. The efficacy of botulinum
toxin in treating SD may not be limited solely to its local effect on laryngeal muscles and also may modulate the disorder at the
level of the central nervous system.

Conclusion: Future therapeutic options that target the central nervous system may help modulate the underlying disor-
der in SD and allow clinicians to better understand the principal pathophysiology.
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Level of Evidence: NA.
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INTRODUCTION
Our ability to speak is regulated by a number

of complex specialized mechanisms that coordinate
high-level cortical processing, brainstem reflexes, and
peripheral nerves. Although vocalization was mapped
to the motor cortex by Penfield in 1930s,1 our current
understanding of neural control of voice and speech
production is based on studies conducted in the past 5
years. However, in the field of otolaryngology, the role
of the central nervous system (CNS) in controlling
speech production often has been overlooked. In this

review, we present an overview of central control of
voice production and discuss the potential neuropatho-
physiology of spasmodic dysphonia (SD). Although SD
was characterized in 1980s and 1990s, much of what
we currently know regarding the detailed clinical phe-
nomenology, neural correlates, and genetics of SD is
through contemporary studies conducted within the
past decade. A better understanding SD has helped us
appreciate the importance of CNS regulation in voice
production.

Development
Voice production in humans can be voluntary as in

speaking and singing, or involuntary as is occasionally
observed in response to pain, fright, or emotions. Volun-
tary and involuntary voice production is coordinated
under the control of brain stem, midbrain, and cortical
structures. The intricate neural circuitry involved in
human voice production gradually develops over time
from initial involuntary shrieks and cries in infants to
clearly articulated vocal communication later in life.
Vocalization is not acquired through explicit instruction;
rather, it is implicitly acquired through a gradual pro-
cess of increased adaptation and development, resulting
in more complex behaviors such as speaking and sing-
ing. As a child gradually acquires control over orofacial

From the Maimonides Medical Center, Voice and Swallowing
Disorders, Division of Otolaryngology–Head and Neck Surgery (N.M.),
Brooklyn; the Department of Neurology (K.S., A.B.); the Department of
Otolaryngology–Head and Neck Surgery (K.S.), The Icahn School of Medi-
cine at Mount Sinai; and the New York Center for Voice and Swallowing
Disorders (A.B.), New York, New York, U.S.A.

Editor’s Note: This Manuscript was accepted for publication April
3, 2017.

Financial Disclosure: K.S. was supported by the grants from
National Institute on Deafness and Other Communication Disorders
(R01DC011805, R01DC012545) and National Institute of Neurological
Disorders and Stroke (R01NS088160). The authors have no other fund-
ing, financial relationships, or conflicts of interest to disclose.

Send correspondence to Niv Mor, MD, Voice and Swallowing Disor-
ders, Division of Otolaryngology– Head and Neck Surgery, Maimonides
Medical Center, 919 49th Street, Brooklyn, NY 11219. E-mail: nivmor73@
gmail.com

DOI: 10.1002/lary.26655

Laryngoscope 128: January 2018 Mor et al.: Central Voice Production and SD

177

http://orcid.org/0000-0002-8537-0259


and laryngeal muscles, early signs of speech develop
that often are heard as babbling. As development contin-
ues, speech motor control becomes increasingly more
skilled, and voice onset and offset come to be timed to
differentiate between different sounds.2

Voice, Speech, and Language
The distinction between voice, speech, and language

is important. Voice usually is used for speech, and
speech conveys meaning. Language involves the formu-
lation of meaningful phrases in grammatically articular
relationships. Examination of voice control without the
confounding effects of language would more accurately
characterize voice production without meaning. Nonlan-
guage voice production involves voice changes alone and
does not require the use of lips, tongue, and jaw move-
ments for speech or articulation. Although vocalization
requires precise control of the larynx and utilizes skilled
laryngeal motor patterns necessary for speech produc-
tion, it does not necessarily convey language or mean-
ing.2 Different brain levels control vocalizations of
different degrees of complexity, and the CNS control
over voice production can be perceived as somewhat
hierarchical.3 As one moves up the hierarchical ladder,
increasingly more complex vocalizations begin to incor-
porate voice with speech and language.

Central Control of Voice Production
The lowest level in this hierarchical system is under

control of the reticular formation and phonatory sensory
and motor nuclei within the brainstem, with motoneur-
ons to the intrinsic laryngeal muscles located in the
nucleus ambiguus and motoneurons of extrinsic laryn-
geal muscles located near the hypoglossal nucleus3–5

(Fig. 1). This level of central control is responsible for
production of innate vocalizations, which include nonver-
bal vocalization such as the cry or laugh of an infant.
The structure of innate vocalizations genetically is pre-
programmed.6 This means that nonverbal emotional
vocalizations are not learned actions and are not under
the control of the forebrain. For example, anencephalic
infants with intact brain stems and no forebrain still are
capable of vocal utterances and verbal reactions to pain-
ful stimuli.7

As children develop and become capable of learning
and mimicking vocal utterances, innate vocalizations
increasingly become more voluntary. At this stage of
development, a cry can be produced without the pres-
ence of an emotional stimulus or can be suppressed
despite the presence of discomfort. Although still part of
the innate vocalization system, this level of vocal control
is more advanced and requires input from higher brain
regions such as the cingulate cortex (CC) and the peria-
queductal gray (PAG) (Fig. 1). The CC and PAG are
responsible for the control of emotional vocalizations,
voice initiation, and modulation of its intensity.8 The
PAG appears to act as a gateway between the CC and
the brainstem, linking the external stimulus with the
motivational vocal reactions. The role of the PAG and

CC in voice production further can be understood in
their absence. Destruction of the CC does not interfere
with voice that is initiated in the PAG. Thus, the ability
to speak and vocalize is preserved with the loss of emo-
tional intonation. By contrast, destruction of the PAG
abolishes all vocalizations that originate from the CC,
resulting in mutism.8,9

The above innate emotional voice system differs
from the cortically based system that supports the devel-
opment of learned voice productions necessary for
speech.2,9,10 This highest level of voice production is
under the control of the speech motor cortex—including
the laryngeal motor cortex (LMC) and orofacial motor
cortex—which coordinate more than 100 muscles used in
phonation, swallowing, and breathing (Fig. 1). The LMC
is responsible for highly skilled learned laryngeal move-
ments, such as speaking and singing. Almost all laryn-
geal muscles receive bilateral innervation from the left
and right LMC; thus, patients with unilateral injury to
the LMC still maintain the ability of voluntarily voice
control.9 Neuroimaging and electrical stimulation stud-
ies have localized the LMC in humans to area 4 of the
primary motor cortex (Fig. 2).11–16 Interestingly, the
motocortical location of the larynx in nonhuman pri-
mates is different than in humans, where it is located
far more rostrally and ventrally in area 6 of the premo-
tor cortex. This difference likely represents an

Fig. 1. Hierarchical organization of central voice control depicting
different interconnected levels of the voice control. The lowest
level represented by the brain stem and spinal cord. Higher level
of voice control is represented by the PAG and CC. The highest
level is represented by the LMC. The dotted lines represent inter-
connections between regions. CC 5 cingulate cortex; LMC 5
laryngeal motor cortex; PAG 5 periaqueductal gray. [Color figure
can be viewed in the online issue, which is available at www.laryn-
goscope.com.]
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evolutionary adaptation toward enhanced verbal commu-
nication in humans when compared to nonhuman pri-
mates. The LMC in area 4 of the motor cortex is thought
to enable direct connection between the LMC and laryn-
geal motoneurons in the nucleus ambiguus of the brain-
stem.16,17 The importance of the LMC in human voice
production is highlighted when juxtaposed with its more
limited role in the nonhuman primates, which has mark-
edly limited capacity for complex speech and voice pro-
duction. Faster more direct coordination of complex
laryngeal, orofacial, and respiratory movements in
humans likely facilitates learning and voluntary vocal
control for the purposes of speech and singing. In nonhu-
man primates, this connection is made indirectly,17,18

which may explain why these species are less capable of
learning new vocal tasks. Bilateral lesions to the LMC
in nonhuman primates result in a very limited deficit,
without a profound effect on vocalizations. By contrast,
bilateral lesion to the LMC in humans results in speech
loss, preserving only the nonverbal emotional vocaliza-
tions such as grunting, crying, and laughing that are
controlled through the cingulate-PAG circuitry.9

Somatosensory Feedback
The exact receptors type and its role in laryngeal

somatosensory feedback during speech are less well
known and still debated.19 Some authors have suggested
that stretch reflexes in the laryngeal muscles may pro-
vide proprioceptive feedback assisting in voice con-
trol.20–22 Thus far, no studies have demonstrated the

physiological effect of stretched human laryngeal muscle.
Recent findings suggest that spindle fibers only occur
within the interarytenoid muscle and are sparse or
absent in the thyroarytenoid, lateral cricoarytenoid, crico-
thyroid, and posterior crioarytenoid muscles.23–25 Fur-
thermore, animal models show that sensory afferent
fibers from the internal branch of the superior laryngeal
nerve (iSLN) are more sensitive to mucosal deflection
than to muscle stretch. Bhabu et al. demonstrated initia-
tion of the laryngeal adductor response in human by an
air stimulus to the laryngeal mucosa, supporting the role
that mucosal mechanoreceptors provide dynamic sensory
feedback to the central nervous system.26–31 The laryn-
geal adductor reflex can also be elicited by a direct elec-
trical stimulus to the iSLN. Both electrical stimulation
and mechanical air stimulation result in an early ipsilat-
eral response, designated as R1, and a later bilateral
response designated as R2. The R1/R2 response is compa-
rable to the blink reflex.26,29,32 Like the blink reflex,
repeated laryngeal stimulation leads to reduction of fre-
quency and amplitude to the R2 response and likely is a
result of central inhibition.32–34 Phonation causes
repeated mechanical perturbation to the vocal folds, and
central suppression likely plays an integral role in in
facilitating fluidity of sound during vocalization and
speech by controlling the adductor reflex responses.

Spasmodic Dysphonia
The importance of the role of the CNS in controlling

speech production can be further understood within the

Fig. 2. (A) Motor sequence within the primary motor cortex with the vocalization region in the inferior portion of the precentral gyrus. (B)
Functional magnetic resonance imaging studies of 19 patients during voice production. Bilateral peaks of laryngeal motor cortex activation
were found in the area 4 with an additional peak of activation in the left area 6. With permission from Simonyan K. The laryngeal motor cor-
tex: its organization and connectivity. Current Opinion in Neurobiology 2013; 28:15–2.16 TR. PYR. 5 tractus pyramidalis. [Color figure can
be viewed in the online issue, which is available at www.laryngoscope.com.]
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context of centrally derived speech disorders such as
spasmodic dysphonia. Laryngeal dystonia is a clinical
syndrome characterized by task-specific involuntary con-
tractions of the internal laryngeal muscles. Respiratory
laryngeal dystonia results in laryngeal contraction of var-
ied degrees during breathing that usually disappears
with sleep and spares patients’ fluency during speech.35

Patients with singers dystonia have laryngeal hyperkine-
sias only while singing—not during conversational
speech.36,37 Spasmodic dysphonia (SD) is a focal dystonia
affecting fluency of voice during speech. It is the most
commonly affected task of the laryngeal dystonias, which
were believed to result from dysfunction at the level of
the basal ganglia, although this view has recently been
expanded to include the pathophysiological network to
the cerebellum and sensorimotor cortical regions.38

Although the exact pathophysiology of SD is
unknown, recently structural alterations in brain organi-
zation were demonstrated in patients with SD, including
focal reduction of axonal density and myelin along the
corticobulbar/corticospinal tract.39–43 Functional mag-
netic resonance imaging (fMRI) identified brain abnor-
malities in patients with SD and demonstrated a greater
extent of brain activation in the cortical brain regions
responsible for the control of voice production during
both symptomatic driven and asymptomatic tasks.44–46

The extent of activation within the subcortical struc-
tures (basal ganglia, thalamus, and cerebellum) also
increased, but only during symptomatic speech; it was
decreased during asymptomatic laryngeal tasks. These

changes were noted both in patients with adductor and
abductor SD and suggest that the primary disturbance
in SD is associated with dysfunction of the sensorimotor
cortex as well as the basal ganglia-thalamocortical cir-
cuitry (Fig. 3).

A recent study also found neurochemical alterations
in the basal ganglia in patients with SD.39 Positron emis-
sion tomography with the radioligand [11C] raclopride
(RAC) was used to explore striatal dopaminergic neuro-
transmission during symptomatic speech and was com-
pared to healthy controls. Finger tapping was used as an
internally controlled task and was designated as an
asymptomatic task. Patients with SD had fewer available
striatal dopamine D2/D3 receptors, as well as decreased
levels of dopamine release during symptomatic speech.
Interestingly, patients with SD demonstrated increased
dopamine release during the asymptomatic tasks (finger
tapping) when compared to healthy controls. It is possible
that decreased dopaminergic transmission is responsible
for the generation of symptoms in patients with SD, and
the observed increased striatal dopaminergic function
compensatory adaptation of the nigrostriatal dopaminer-
gic system to decreased dopamine D2/D3 receptor avail-
ability. Also patients who were more symptomatic had
greater RAC displacement, and those with longer dura-
tion of spasmodic dysphonia had decreased task-induced
RAC displacement.

Neural abnormalities described in spasmodic dys-
phonia explain which brain regions and connections or
neurochemical makeup are implicated in the

Fig. 3. Interplay between structural, functional and neurochemical alterations. Microstructural changes of the basal ganglia and sensorimotor
cortex noted by Functional Magnetic Resonance Imaging have a global effect on brain sensorimotor network, organization and function.
[Color figure can be viewed in the online issue, which is available at www.laryngoscope.com.]
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pathophysiology of this disorder. Further identification
of these alterations in spasmodic dysphonia and other
voice disorders not only can help the physician better
understand the disorder itself but could simultaneously
help define the contribution of specific brain regions in
normal voice control.

Treatment of Spasmodic Dysphonia
The role of the CNS in voice production can be fur-

ther elucidated in the context of the evolution of the
treatment of SD. Although SD is now recognized as a
CNS disorder, initial attempts to restore voice focused at
alterations to the laryngeal framework, muscles or
peripheral nerves.47 Initial studies reported an 85% to
90% success rate following recurrent laryngeal nerve
(RLN) transection; however, a follow-up study showed
that 64% of patients had return of pathologic voice qual-
ity.48–50 Previous explanations for the return of the dis-
order have been proposed, including reinnervation by
proximal RLN axons.51 In an attempt to provide perma-
nent selective denervation, Berke et al. performed selec-
tive laryngeal adduction denervation and reinnervation
(SLAD/R).52 This procedure incorporates bilateral RLN
transection to branches responsible for innervating only
the adductor laryngeal muscles. To prevent unwanted
reinnervation from the RLN and to maintain muscle
tone, the cut branches were anastomosed to a branch of
the ansa cervicalis. Initial results with SLAD/R were
promising and showed improved success when compared
to RLN transection alone. However, long-term results
demonstrated the return of voice breaks in 26% and a
persistent breathy voice quality in 30%.53

Disappointing results with any surgical alterations,
whether to the end-organ or the peripheral nerves, to pro-
vide long-term symptomatic relief likely are due to the
failure of surgery to address the CNS. Surgery is perma-
nent, and fixed alterations do not account for the possibil-
ity of CNS plasticity and adaption.54 In addition, RLN
transection does not address the numerous interconnec-
tions within the larynx and interconnections between the
superior laryngeal nerve SLN and RLN (Fig. 455). Theoret-
ically, these interconnections could allow persistent CNS
access to alter normal laryngeal muscles physiology.56–61

Botulinum Toxin
In 1985, Blitzer found dramatic improvement of

voice quality following direct injection of botulinum toxin
(BoNT) to the affected laryngeal muscles.62 Botulinum
toxin is a 150-kilodalton exotoxin produced from clostrid-
ium botulinum, the action of which is medicated through
the cleavage of docking proteins, responsible for mem-
brane fusion of presynaptic vesicles, and now is the gold
standard for treatment for laryngeal dystonia. Cleavage
of these docking proteins inhibits release of acetylcholine
(Ach) at the neuromuscular junction and results in mus-
cle weakness. Unlike surgery, BoNT continuously is
metabolized, and the ever-changing effect does not allow
for central adaptation. In addition to weakening laryn-
geal muscle activity, BoNT decreases the activation of

muscle fibers directly through its effect on the intrafusal
sensory fibers. However, local chemodenervation does
not fully explain the clinical effects of BoNT. If BoNT
interfered solely with muscle action and sensory fiber
tone, then BoNT injections should have no effect on cen-
tral efferent pathways. However, it is well known that
unilateral BoNT injections reduce involuntary aberrant
contractions to the contralateral untreated laryngeal
muscle groups.63,64 A possible explanation for this find-
ing is that modulation of the laryngeal muscles has an
effect on the sensory feedback loop.

It has also been shown that the aberrant central
activity at the primary sensorimotor cortex (areas 3,1,2)
is normalized after peripheral BoNT injections, demon-
strating BoNT’s effect on modulating the central nervous
system.65 Although the exact mechanism is unknown, it
is feasible that elements of BoTN are transmitted
through the peripheral nerves in a retrograde fashion
and modulate the central interneurons directly.66,67

Fig. 4. Anastomoses between the laryngeal nerves. 1 5 Galen’s
anastomosis; 2 5 deep arytenoid plexus; 2 5 superficial arytenoid
plexus; 3 5 cricoid anastomosis; 4 5 thyroarytenoid anastomosis; 5
5 foramen thyroideum anastomosis; 6 5 cricothyroid anastomosis.
ELN 5 external laryngeal nerve; ILN 5 internal laryngeal nerve; RN
5 recurrent nerve; SLN 5 superior laryngeal nerve. With permission
from Sanudo, JR, Maranillo E, Leon, X, Mirapeix RM, Orus C, Quer
M. An anatomical study of anastomoses between the laryngeal
nerves. Laryngoscope. 1999;109:983-987. 55
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Whatever the cause, BoNT is effective and its actvity
does not appear to be limited to local alterations of the
laryngeal muscles.

Future therapeutic options targeting the central ner-
vous system in SD currently are being investigated. A
recent survey showed that 55.9 % of patients with SD
had improvement in voice quality following ingestion of
alcohol. This observation is likely related to alcohol’s
effect on the CNS system (via GABA function).68 This
finding led researchers to investigate the effects of drugs
that could potentially improve SD voice symptoms by act-
ing like alcohol on GABAergic transmission. Thus far, a
metabolite of sodium oxybate, which behaves as a GABA
receptor agonist, has found to improve SD symptoms in
82.2% of SD patients who had previously had symptom-
atic improvement following alcohol ingestion.69–73

CONCLUSION
Our ability to produce purposeful vocalizations and

speak fluently is regulated by a complex network of
mechanisms originating at the level of the CNS. Central
regulation in voice production and speech is crucial.
Spasmodic dysphonia is a disorder of the CNS and an
example of selectively disordered central voice regula-
tion. Recent studies suggest that SD results from a pri-
mary central disturbance in the LMC and its circuitry.
Botulinum toxin has shown great efficacy in treating
patients’ symptoms. Injection of BoNT into the laryngeal
muscles is not limited to its effect locally and also con-
veys an effect to the CNS. Nevertheless, it is important
to highlight that BoNT is effective at only temporarily
treating the symptoms related to SD and does not ulti-
mately treat the underlying central disturbance. Future
therapeutic options that target the central nervous sys-
tem may help modulate the disorder and allow clinicians
to better understand the pathophysiology of SD. Lastly,
a better understanding of the types of receptors and the
role they play in laryngeal somatosensory feedback dur-
ing voice production and speech may provide us with
additional understandings of the exact therapeutic role
of BoNT both locally and centrally in treating the vocal
symptoms related to SD.
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