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Abstract

The basal ganglia are a complex subcortical structure that is principally
involved in the selection and implementation of purposeful actions in response
to external and internal cues. The basal ganglia set the pattern for facilitation of
voluntary movements and simultaneous inhibition of competing or interfering
movements. In addition, the basal ganglia are involved in the control of a wide
variety of non-motor behaviors, spanning emotions, language, decision making,
procedural learning, and working memory. This review presents a comparative
overview of classic and contemporary models of basal ganglia organization and
functional importance, including their increased integration with cortical and
cerebellar structures.
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Introduction

The basal ganglia are a group of interconnected subcortical
nuclei that include the putamen and caudate nucleus (collec-
tively, the striatum), globus pallidus (its internal GPi and external
GPe segments), substantia nigra (its pars compacta SNc and
pars reticulata SNr), and the subthalamic nucleus (STN). The
limbic portion of the basal ganglia is composed of the nucleus
accumbens, ventral pallidum, and ventral tegmental area. The
basal ganglia are principally involved in the selection and
implementation of purposeful actions in response to external
and internal cues. Most prominently, the basal ganglia set the
pattern for facilitation of voluntary movements and simulta-
neous inhibition of competing or interfering movements'~.
Their contribution is also linked to the control of a wide
range of complex non-motor behaviors, including emotions,
language, decision making, procedural learning, and working
memory.

Contemporary views about the expanded structural and func-
tional organization of the basal ganglia are informed by several
key discoveries that have been made in the past few years.
These have important implications not only in regard to normal
functioning of the basal ganglia and larger neural networks
in general but also in terms of unraveling piece-by-piece yet-
unknown mechanisms of various neurological and psychiatric
disorders, such as Parkinson’s disease, dystonia, obsessive—
compulsive disorder, and Tourette syndrome, to name a few.
This review presents a comparative overview of classic and con-
temporary models of basal ganglia organization, including their
increased envelopment with cortical and cerebellar structures,
and a discussion of the functional importance of basal ganglia
and their significance in brain disorders.

Intrinsic basal ganglia connectivity

There are several levels of complexity in the organization of
basal ganglia. Since the late 1980s, the classic model of the basal
ganglia in both humans and animals has been built on the pres-
ence of intrinsic direct and indirect pathways, both compris-
ing a consecutive set of excitatory glutamatergic and inhibitory
GABAergic projections. The intrinsic model® includes top-down
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cortical projections to the striatum, which further converge
on GPi and SNr either directly or indirectly via GPe and STN
(Figure 1A). The output from GPi and SNr is then directed to the
thalamus, which further projects back to the cortex, forming a
complete cortico-basal ganglia-thalamo-cortical loop. Both direct
and indirect basal ganglia pathways are modulated by endog-
enous dopamine release from the SNc, which acts upon dopamine
D -family receptors expressed on medium spiny neurons (MSNs)
predominantly within the net excitatory direct pathway and
D,-family receptors expressed predominantly within the net
inhibitory indirect pathway, thus balancing excitation and
inhibition within the thalamo-cortical circuitry.

Building on the framework of this original model, recent
studies discovered a much denser intrinsic basal ganglia
connectivity (Figure 1B). One of the important updates to this
model was the identification of bridging collaterals between the
direct and indirect pathways, providing evidence for a cross-
talk between these circuits, which were initially assumed to be
largely segregated*". The density of bridging collaterals was found
to modulate the functional balance within the basal ganglia such
that an increase in bridging collaterals led to enhanced pallidal
inhibition®. In line with these findings, a recent positron emission
tomography (PET) study in human subjects demonstrated a great
degree of overlap between the direct and indirect basal ganglia
pathways’.

Another revision to the classical model of basal ganglia involved
the expansion of STN’s responsibility within its network. The
STN is now considered a major input relay station receiving direct
projections from various cortical and subcortical regions, includ-
ing the recently identified hyperdirect cortico-subthalamo-pallidal
pathway*'?. The paramount significance of this finding is in
its clinical relevance to the treatment of brain disorders, such
as Parkinson’s disease, where STN is a target for deep brain
stimulation (DBS). Thus, detailed knowledge of its involvement
in extrinsic cortical (hyperdirect pathway) and intrinsic basal
ganglia (direct and indirect pathways) networks provides
advanced knowledge, allowing fine-tuning of the DBS procedure
and programming.
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Figure 1. Schematic representation of basal ganglia intrinsic and extrinsic connectivity according to (A) the classical model and (B) the

contemporary model. Modified and adapted with permission from Simonyan et al
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The reciprocity between basal ganglia structures is further
established by expanded circuitry of GPe, which not only
projects downstream to STN but also sends direct collaterals to
GPi and SNr as well as feedback projections to the striatum'"'”.
GPe has been found to contain heterogeneous populations of
neurons, including Arky-GPe neurons targeting striatal GABAer-
gic interneurons’, Lhx6-GPe neurons strongly projecting to
the SNc and STN, and PV-GPe neurons predominantly project-
ing to the STN and parafascicular thalamic nucleus', which
collectively contribute to distinct motor and non-motor behav-
iors via different pallidal circuits”~". Overall, this higher level
of integrity and interactions between basal ganglia structures
allows their enhanced functional importance in contributing to and
controlling an array of human and animal behaviors.

Although the SNc is known as the main structure harboring
dopaminergic neurons that project to different basal ganglia and
cortical divisions, dopaminergic neurons were also found to be
scattered throughout the primate striatum and abounded in its
ventral portion'*". An increase in the number of striatal dopamin-
ergic neurons has been observed as a potentially compensatory
response to the loss of nigrostriatal dopaminergic innervation,
with the significance of implications for neurological disorders
involving the basal ganglia and abnormal dopaminergic
function, such as in Parkinson’s disease and dystonia. However,
a recent study has challenged these assumptions by defining the
vast majority of striatal tyrosine hydroxylase (TH) interneurons in
transgenic enhanced green fluorescent protein (EGFP)-TH mice
as medium-sized, aspiny, or very sparsely spiny interneurons
expressing low levels of TH and making GABAergic synapses
onto spiny projection neurons’'.

In addition to these discoveries of cellular composition of the
basal ganglia, an important feature of intrinsic organization
is that their input is arranged in a highly topographic manner
(Figure 2). Similar to the distribution of body regions within
the sensorimotor cortex, the basal ganglia nuclei are too
somatotopically organized, harboring leg-hand/arm-face-larynx
representations~*. These areas receive projections from cor-
responding motocortical regions, with the somatotopy pre-
served at the entire rostro-caudal extent and in their output to the
thalamus, which loops back to the corresponding cortical
representations. In the striatum, pallidum, and thalamus, the dis-
tribution of body regions is along the dorsal-ventral axis, with
primary motor and premotor cortical projections forming paral-
lel homunculi. The STN, on the other hand, forms a mirror set
of homunculi, with the primary motor cortex predominantly
projecting to its lateral part and the premotor cortex predomi-
nantly projecting to the medial part, although some areas receive
a convergent input from both motocortical regions. Finally, SNr
and SNc projections with the striatum have an inversed dorsov-
entral topography, such as the dorsal parts of the striatum project
to the ventral SN regions, while the ventral striatal regions
project dorsally. The dorsal one-third of SN carries the orofacial
representation as a continuation of the same regions of the GPi,
and the more ventral region receives an input from the premo-
tor territories of the putamen”-’. The rostromedial two-thirds
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contain projections from prefrontal striatal areas’’, and the most
medial part receives limbic striatal input””. The SNc¢ dopamin-
ergic neurons give rise to topographically organized striatal
projections**—°. Specifically, the dorsal tier and the most medial
part of the ventral tier of the SNc project to the ventromedial
striatum; the remaining ventral tier projections are directed to the
associative striatum, and the ventrally extending cell columns of
the ventral tier are connected to the sensorimotor striatum’’-*.
The nigrostriatal connections, at least those of the striatal matrix,
are reciprocal, and dopaminergic neurons synapse on MSNs,
which in turn reach back to the somata and dendrites of SNc
neurons™*’. However, reciprocal nigrostriatal connections do
not form a closed loop; instead, the ventral tier of SNc that
receives input from the ventromedial striatum projects to the
more dorsolateral striatum*'*>. In addition, while the nigral
projections are topographically organized and directed to a
particular striatal region, the extending weaker fibers also reach
all other striatal divisions*. Thus, such feedforward connections
allow the interplay between different striatal divisions that are
responsible for the control of different aspects of a behavior.

Extrinsic connectivity of the basal ganglia

Originally, there were two different proposals of how infor-
mation may flow within the extrinsic cortico-basal ganglia-
thalamo-cortical pathways. The prevailing view included the
formation of parallel-projecting loops®, whereas the alternative
view pertained to information convergence across the loops’
(Figure 3). The three principal functional loops are the motor
loop, which projects via motor and premotor cortices; the
associative loop, which involves dorsolateral prefrontal and pari-
etal cortices; and the limbic loop, which converges on orbital
and medial prefrontal cortex. However, these functional loops
are found to be only partially segregated while establishing
the anatomical links at different cortical, striatal, pallidal, and
subthalamic levels*. In addition, selection and processing of a
complex goal-directed behavior require an integration across
different loops that carry information about motor, cognitive,
and limbic components. As such, both parallel processing and
information convergence are present within the cortico-basal
ganglia-thalamo-cortical pathways.

In regard to extrinsic basal ganglia neuromodulatory projec-
tions, it has recently been demonstrated that, in addition to the
major excitatory (glutamatergic) cortico-basal ganglia input®,
the striatum receives direct GABAergic projections from
motor and auditory cortices®. Primary and secondary motor
cortex-striatal long-range projections in mice are supported by
different molecular subtypes of GABAergic neurons, which
express either somatostatin (SOM*) or parvalbumin (PV*)
and differ in their target cell preference and the modula-
tory effects of a motor behavior’’. On the other hand, while
it is established that the basal ganglia modulate the cortex
indirectly via the inhibitory (GABAergic) output to thalamus, a
direct GABAergic/cholinergic projection between the GPe and
frontal cortex does also exist*. Again, two cell types comprise
this connectivity and differ in their electrophysiological
properties, cortical target projections, and expression of choline
acetyltransferase (ChAT).
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Figure 2. Somatotopical representations within the motor cortex, basal ganglia, and thalamus (A) Lateral and medial view of the monkey
brain showing the somatotopic representation of body regions. Light-gray shading indicates primary motor cortex, and dark-gray shading
indicates premotor cortex. Adapted with permission from Fadiga et al.*. (B, C) Dorsoventral views of the basal ganglia subdivisions (B)
(putamen, external segment of the globus pallidus [GPe], internal segment of the globus pallidus [GPi], substantia nigra pars reticulata [SNr],
and substantia nigra pars compacta [SNc]) and thalamus (C) depicting somatotopic body representations. Adapted with permission from

Nambu®.

Another drastic revision to the organization of extrinsic basal
ganglia connectivity is the addition of the cerebellum to this
circuitry. The original view of the cerebellum and basal ganglia
was that of a “funneling” system, where both structures receive
and process information from prefrontal, parietal, and temporal
areas with a subsequently integrated output to the primary motor
cortex for execution of a motor command™. However, the

development of a retrograde transneuronal tracer, herpes simplex
virus type 1 (HSV1), allowed the important discovery that
different subdivisions of the basal ganglia (that is, GPi and
SNr) and cerebellum (that is, dentate nucleus) have, in fact, a
widespread output via distinct target thalamic nuclei to other
cortical regions, such as subdivisions of premotor, oculomo-
tor, prefrontal, and inferotemporal areas. Based on a revision of
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Figure 3. Schematic representation of major basal ganglia loops: the motor, associative, and limbic. The representation is organized
according to (A) the parallel-projecting hypothesis®™=% and (B) information convergence across the loops. Adapted from Percheron and

Filion®*.

anatomical connectivity, it was proposed that the basal ganglia
and cerebellum influence not only the motor behaviors but also
various cognitive and limbic functions~’. However, it was still
believed that the basal ganglia-thalamo-cortical and cerebello-
thalamo-cortical pathways form anatomically independent loops
that converge and communicate mainly at the level of target
cortical regions®.

Further modifications to this view came with the development
and use of another retrograde transneuronal tracer, the rabies
virus, which led to the discovery of basal ganglia and cerebel-
lar connectivity at the subcortical level’”". Specifically, the STN
was identified as an output region of dense disynaptic projections
via the pontine nuclei to the cerebellar cortex. On the other
hand, the dentate nucleus was found to be the main output
structure, primarily via intralaminar thalamic nuclei, of dense
disynaptic projections to the striatum and trisynaptic projections
to the GPe but not the GPi. In addition, other deep cerebellar
nuclei (that is, fastigial and interpositus nuclei) were demon-
strated to be sources of striatal disynaptic projections, albeit to a
lesser extent than the dentate nucleus. Given the participation of
the GPi and GPe in the intrinsic direct and indirect basal gan-
glia pathways, respectively, it was suggested that the cerebel-
lar output may preferentially influence the indirect basal ganglia
pathway’"-°. Similar to the basal ganglia-thalamo-cortical output,
the basal ganglia-cerebellar anatomical network is topographi-
cally organized in such a manner that the motor, associative, and
limbic regions are interconnected between the two structures.
This bidirectional communication between the basal ganglia and
cerebellum at both subcortical and cortical levels is assumed to
provide a backbone of the integrated functional network where
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motor and non-motor information is processed at multiple stages
before its final cortical output.

In conclusion, the development of new methodologies and
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subjects paved the way for a more complex view of basal ganglia
structural organization. These advances have enhanced our
understanding of the functional importance of this structure
within the large-scale brain network, expanding their role in both
motor and non-motor domains. Importantly, detailed knowl-
edge of basal ganglia organization informed our views of their
contribution to the pathophysiology of a range of neurological
and psychiatric disorders and played a critical role in the
development of novel therapeutic opportunities targeting specific
anatomical or functional links (or both) of basal ganglia
connectivity. Continued progress in the field of basal gan-
glia research will further refine and characterize the multi-
layer organization of this structure, including both intrinsic and
extrinsic connectivity.
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