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Neurobiology of Disease

Abnormal Striatal Dopaminergic Neurotransmission during
Rest and Task Production in Spasmodic Dysphonia
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Spasmodic dysphonia is a primary focal dystonia characterized by involuntary spasms in the laryngeal muscles during speech produc-
tion. The pathophysiology of spasmodic dysphonia is thought to involve structural and functional abnormalities in the basal ganglia-
thalamo-cortical circuitry; however, neurochemical correlates underpinning these abnormalities as well as their relations to spasmodic
dysphonia symptoms remain unknown. We used positron emission tomography with the radioligand [ ''C]raclopride (RAC) to study
striatal dopaminergic neurotransmission at the resting state and during production of symptomatic sentences and asymptomatic finger
tapping in spasmodic dysphonia patients. We found that patients, compared to healthy controls, had bilaterally decreased RAC binding
potential (BP) to striatal dopamine D, /D, receptors on average by 29.2%, which was associated with decreased RAC displacement (RAC
ABP) in the left striatum during symptomatic speaking (group average difference 10.2%), but increased RAC ABP in the bilateral
striatum during asymptomatic tapping (group average difference 10.1%). Patients with more severe voice symptoms and subclinically
longer reaction time to initiate the tapping sequence had greater RAC ABP measures, while longer duration of spasmodic dysphonia was
associated with a decrease in task-induced RAC ABP. Decreased dopaminergic transmission during symptomatic speech production may
represent a disorder-specific pathophysiological trait involved in symptom generation, whereas increased dopaminergic function during
unaffected task performance may be explained by a compensatory adaptation of the nigrostriatal dopaminergic system possibly due to
decreased striatal D, /D; receptor availability. These changes can be linked to the clinical and subclinical features of spasmodic dysphonia

and may represent the neurochemical basis of basal ganglia alterations in this disorder.

Introduction
Spasmodic dysphonia is a primary task-specific focal dystonia
characterized by involuntary spasms in the laryngeal muscles,
which lead to uncontrolled voice breaks predominantly during
speaking (Bloch et al., 1985). The pathophysiology of spasmodic
dysphonia and other primary dystonias is generally thought to
involve abnormalities in the basal ganglia, sensorimotor and cer-
ebellar networks (Berardelli et al., 1998; Hallett, 1998; Defazio et
al., 2007; Neychev et al., 2011). However, the neurochemical un-
derpinnings of these abnormalities remain poorly understood.
It has been suggested that abnormally increased or decreased
dopamine levels may modulate striatal synaptic plasticity in
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dystonia (Todd and Perlmutter, 1998; Hallett, 2004; Breakefield
et al., 2008; Peterson et al., 2010), while decreased D, receptor-
mediated inhibition may alter the balance between basal ganglia
excitation and inhibition, cause disinhibiton of the thalamocor-
tical circuitry, and contribute to dystonic muscle contractions
during performance of fine motor tasks (Lenz et al., 1998; Defazio
etal., 2007). Accordingly, decreased striatal dopamine D,/Dj re-
ceptor binding at rest was found in patients with cranial, cervical,
and focal hand dystonias (Horstink et al., 1997; Perlmutter et al.,
1997; Naumann et al., 1998; Berger et al., 2007; Horie et al., 2009)
as well as manifesting and nonmanifesting DYT1 and DYT6 mu-
tation carriers (Augood et al., 2002; Asanuma et al., 2005; Carbon
et al., 2009). It is likely that these patients may also have altered
dopamine release during task production; however, the extent of
dopaminergic abnormalities during symptom generation has not
yet been reported in either spasmodic dysphonia or other pri-
mary dystonias. Our knowledge remains also limited in regard
to the dopaminergic influences on clinical manifestation of
dystonic symptoms, as only a few studies have described mini-
mal, if any, correlations between decreased D,/D5 receptor bind-
ing and severity/duration of dystonia (Horstink et al., 1997;
Naumann et al., 1998; Carbon et al., 2009; Horie et al., 2009).
The goal of this study was to investigate striatal dopaminergic
transmission in patients with spasmodic dysphonia compared to
healthy controls during resting as well as symptomatic sentence
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Table 1. Demographic and dlinical characteristics of participants

Spasmodic
dysphonia Healthy p
patients controls value
Demographic characteristics
Speech production RAC PET
Number of participants 18 18
Age 546 +=11.0 546+92 099
Gender 12F/6 M 12F/6M 1.00
Handedness Right Right
Spoken language English English
Other language experience None None
Sequential finger tapping RAC PET
Number of participants 15 15
Age 546 = 9.2 544 *+95 0.97
Gender 10F/5M 9F/6M 0.72
Clinical characteristics
Other forms of dystonia None None
Number of symptomatic patients 18 N/A
Number of patients on botulinum toxin 17 N/A
treatment
Spasmodic dysphonia duration 133+£73 N/A
Spasmodic dysphonia severity (voice 24+18 N/A
breaks per sentence)
Number of finger taps 4245 + 861 4140 =966  0.37

844119
02=*+03

86.4 =137 034
—02=03 0.006

Accuracy of finger taps (%)

Initiation of the tapping sequence
(reaction time value for mean
linear slope coefficient)

F, Female; M, male.

production and asymptomatic sequential finger tapping. We
used positron emission tomography (PET) with the radioligand
["'C]raclopride (RAC) to examine its binding potential (BP) to
striatal dopamine D,/D; receptors, RAC displacement (RAC
ABP) by task-induced dopamine release, and their relationships
with clinical and subclinical features of spasmodic dysphonia.
RAC BP reflects a ratio of receptor density to affinity (B,,,/Kp)
and provides information about the receptor availability, whereas
RAC ABP reflects competitive inhibition of RAC binding by endog-
enously released dopamine and/or noncompetitive interactions
(Laruelle, 2000; Ginovart, 2005).

We hypothesized that patients with spasmodic dysphonia
would have decreased RAC binding to striatal dopamine D,/D;
receptors at rest, which would reflect decreased receptor density
or increased intrinsic dopamine levels (Seeman et al., 1989;
Volkow et al., 1994). This may be associated with altered dopa-
mine release during task production. Based on our previous find-
ings of abnormal functional activity during both symptomatic
and asymptomatic tasks in spasmodic dysphonia (Simonyan and
Ludlow, 2010), we expected to identify changes in RAC ABP
during both symptomatic speaking and asymptomatic finger tap-
ping. We hypothesized that some of these abnormalities may be
linked to clinical and subclinical features of spasmodic dyspho-
nia, possibly contributing to the manifestation of this disorder.

Materials and Methods

Subjects. Eighteen patients with an adductor type of spasmodic dyspho-
nia (12 females, 6 males; age, 54.6 = 11.0 years; mean = SD) and 18
age- and gender-matched healthy volunteers (12 females, 6 males; age,
54.6 = 9.2 years; mean * SD) participated in the study (Table 1). All
subjects were right-handed on the Edinburgh Handedness Inventory
(Oldfield, 1971) and monolingual native English speakers. The partici-
pants had no neurological (except spasmodic dysphonia in the patient
group), psychiatric, or laryngeal problems based on history and physical
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examination. All patients were fully symptomatic at the time of study
participation, which was confirmed by voice and speech acoustic analysis
and fiber-optic nasolaryngoscopy. Among them, 17 patients had been on
a regimen of botulinum toxin injections into their laryngeal muscles to
manage their voice symptoms; one patient had not been treated previ-
ously with botulinum toxin. Those patients, who received regular botu-
linum toxin treatment, were recruited at least 3 months after the most
recent injection, when laryngeal symptoms were present and confirmed
clinically. The mean duration of spasmodic dysphonia was 13.3 = 7.3
years (mean = SD), which was established from the time of voice symp-
tom onset during history and physical examination. Clinical neuroradio-
logical evaluation of MRI in both healthy controls and patients found
normal brain structure without any gross abnormalities.

All subjects provided written informed consent before participation in
the study, which was approved by the Institutional Review Boards of the
Icahn School of Medicine at Mount Sinai and National Institutes of
Health, and the NIH Radiation Safety Committee. Similar experiments
were done at about the same time with patients with writer’s cramp, and
some control subjects were shared across the two studies (Berman et al.,
2013). Data from some control subjects were also reported in our previ-
ous study (Simonyan et al., 2013).

Experimental tasks. Two separate PET scans with RAC, which is a
reversible dopamine D,/D; receptor antagonist, were performed to ex-
amine dopaminergic function at rest and during symptomatic sentence
production and asymptomatic sequential finger tapping. During the ini-
tial 100 min scan, subjects rested with their eyes closed in a quiet envi-
ronment in the PET scanner suite with ambient light for 50 min and then
produced short English sentences for the remaining 50 min (Fig. 1A).
The sentences (e.g., “Tom is in the army,” “Are the olives large?”) in-
duced voice symptoms in all patients due to a high number of glottal
stops preceding vowels. Subjects were instructed to listen attentively to
an acoustically presented sample sentence and repeat each sentence four
times at the comfortable conversational speech level. Ten different sen-
tences were recorded from a native English female speaker for the pur-
poses of this study, pseudorandomized between subjects, and presented
one at a time. Subjects performed repetition of different sentences con-
tinuously for 4 min and rested for 1 min to avoid boredom. No acoustical
stimulus was presented during the 1 min resting period (Fig. 1A4). Each
subject was instructed to speak without head movements, which were
additionally minimized by using a comfortably tight thermoplastic mask
molded around the subject’s head.

To assess the differences in dopaminergic transmission during perfor-
mance of an unaffected motor task between patients with spasmodic
dysphonia and healthy controls, 15 of the same subjects per group (con-
trols, 9 females, 6 males; age, 54.4 = 9.5 years; spasmodic dysphonia, 10
females, 5 males; age, 54.6 = 9.2 years; mean = SD) returned for the
second RAC PET scan using a similar scanning paradigm (Fig. 1B, Table
1). Following the 50 min resting baseline, subjects were instructed to
perform sequential finger tapping (i.e., 1-2-3-4-5-4-3-2-1) using the
dominant right hand. Subjects were cued to start finger tapping by a
double beep tone and stop when a single beep tone was presented. All
subjects performed finger tapping for 40 s on a fiber-optic button re-
sponse unit (Celeritas; Psychology Software Tools), which was followed
bya 10 s resting period to avoid boredom. The task production, including
the incorporated 10 s resting between the tasks, lasted for 50 min. The
finger-tapping task was asymptomatic in all patients.

Data acquisition and analysis. All subjects were instructed not to drink
any beverages containing caffeine within 24 h of scanning and to fast for
3 h before the PET scan. Scanning sessions were initiated in the morning
(between 8:30 A.M. and 11:30 A.M.) to control for possible diurnal vari-
ations in dopamine transmission. In subjects receiving two RAC PET
scans, both were performed within a year.

All PET data were acquired on a GE Advance tomograph (GE Medical
Systems). Initially, an 8 min transmission scan was obtained using a **Ge
source for attenuation correction of emission data, followed by the ad-
ministration of RAC as a 1 min bolus and subsequent 99 min constant
infusion (bolus-plus-infusion method; Watabe et al., 2000) using a
computer-operated pump (Harvard Instruments; Fig. 1). Accounting for
the decay, an average injected RAC dose during the speech production
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Figure 1. A, B, Schematicillustration of the experimental design of PET scans with [ "'CJraclopride radioligand during symptomatic sentence production (4) and asymptomatic sequential finger
tapping (B).

scan was 20.2 = 0.4 mCi (mean * SD) with the specific activity of
2851.1 = 1242.9 mCi/umol in patients and 19.7 = 1.4 mCi with the
specific activity 2415.6 * 1207.1 mCi/wmol in healthy controls. During
the finger-tapping scan, an average injected RAC dose was 19.4 = 1.6
mCi with the specific activity of 3553.3 = 1924.4 mCi/umol in patients
and 20.4 = 0.3 mCi with the specific activity of 3796.5 = 2158.3 mCi/
pumol in healthy controls. There were no statistically significant differ-
ences in the tracer conditions between the patient and control groups (all
p = 0.29). At the start of RAC bolus injection, a dynamic PET scan was
initiated in the 3D scanning mode with septa retracted and continued for
the duration of RAC infusion, acquiring 27 time frames of 30 s to 5 min
epochs over a total of 100 min (FOV = 148 mm; reconstructed resolu-
tion, 6 mm in all direction).

Additionally, all subjects underwent a separate MRI scan to obtain
high-resolution T1-weighted images for individual anatomical reference
(3D magnetization prepared rapid acquisition gradient echo sequence
with TI, 450 ms; TE, 3.0 ms; flip angle, 10° bandwidth, 31.25 mm; FOV,
240 mm; matrix, 256 X 256 mm; 128 contiguous axial slices; slice thick-
ness, 1.2 mm).

As an initial step in data analysis, we corrected for possible head
motion-induced artifacts during task performance using the registered
attenuation correction method. After reconstruction of emission images
with filtered backprojection with no attenuation correction, all emission
frames were registered with mutual information to the prime emission
image using the FLIRT toolbox of the FSL software package. The trans-
mission images were further registered to the same prime emission
image, and the emission frame was reconstructed with filtered backpro-
jection to be used for attenuation correction. The emission image was
resliced back to the transmission position, thus correcting for motion. In
addition, individual quality indices were calculated for all preprocessed
data using the AFNI software package to ensure that there were no other
remaining residual head motions, which may introduce artifacts in the
acquired images.

The final motion- and decay-corrected PET images were averaged over
the 40—50 min time interval of baseline and over 60—100 min of task
production using PMOD Technologies software as described previously
(Garraux et al., 2007; Simonyan et al., 2013). In each subject, PET data
sets were aligned to individual high-resolution T1-weighted MR images
using Hellinger distance and the two-pass alignment method, and fur-
ther normalized to a standard Talairach-Tournoux space using PMOD
Technologies and AFNI software packages.

To examine the RAC BP during resting and its changes due to task
production (i.e., speaking and finger tapping), we calculated parametric
voxelwise striatal RAC BP maps for each condition using the equilibrium
ratio of bound ligand to free and nonspecifically bound tracer under the
assumption that nonspecific binding is uniform throughout the brain.
The equation BPy, = (C — C")/C’, where ND indicates free and non-

specific concentrations, was based on the radioactivity concentration in
the striatum ( C) as a region with the highest density of dopamine D,/D,
receptors and the cerebellum (C’) as a region devoid of D,/Dj receptors.
The striatal and cerebellar regions were outlined using the probabilistic
macrolables atlas of the Anatomy Toolbox (Eickhoff et al., 2005) as de-
scribed previously (del Campo et al., 2011; Salimpoor et al., 2011; Simo-
nyan et al., 2013). Based on this atlas, the dorsal striatum, including the
putamen and caudate nucleus, was sampled at its entire rostrocaudal and
dorsoventral extents; the cerebellar region included gray matter defined
on five consecutive slices of both hemispheres. To account for influences
of possible outliers on RAC BP signal variance, which might affect the
statistical differences on group comparisons, we calculated voxelwise
median absolute deviations (MADs) and examined the range of me-
dian = 3.5 * MAD for each data set using AFNI software. Subjects with
RAC BP values outside of this range were considered outliers and re-
moved from the further processing steps. We found that one subject per
each group had RAC BP values outside the normal range and, therefore,
were eliminated from the corresponding groups. Using the data sets of
remaining 17 subjects in each group, the differences between spasmodic
dysphonia patients and controls in RAC BP during resting were assessed
using a voxelwise two-sample independent ¢ test at an FWE-corrected
value of p = 0.017 with a minimal cluster size extent of 100 voxels as
determined using Monte Carlo simulations in AFNI (Forman et al.,
1995). This overall « level of p < 0.017 was chosen to take into account
three different comparisons of RAC BP (i.e., during resting, speaking,
and tapping) between the two groups.

To estimate changes in RAC binding during task performance, we
used the statistical parametric maps of RAC BPy, during resting and the
respective task to calculate the percentage change in RAC BP, (ABP,)
in each subject using the equation ABP = (BPccc/apping — BPresting)/
BP esting X 100% (Watabe et al., 2000). The obtained negative values of
RAC ABP indicated the percentage of displacement of RAC by endoge-
nously released dopamine, with the greater negative values correspond-
ing to the greater RAC displacement. Two separate between-group
comparisons of ABP, during speaking and finger tapping, respectively,
were conducted using voxelwise two-sample independent  tests at an
FWE-corrected value of p < 0.025, with a minimal cluster size extent of
50 voxels.

Relationship between RAC BP measures and task performance. During
the PET experiments, the subjects’ performance was recorded for corre-
lation analyses between RAC BP measures and symptomatic/asymptom-
atic task production. Symptomatic sentence production was recorded in
all subjects using an omnidirectional microphone (ECM-44B; Sony) at-
tached to the tomograph’s bore in a constant position from the subject’s
head. Data were digitized online using LabChart 7 Pro software (ADIn-
struments). Patients” speech recordings were anonymized and random-
ized for blinded analysis of the severity of spasmodic dysphonia
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symptoms by an experienced speech-language pathologist. The presence
of spasmodic dysphonia-characteristic voice breaks in sentences was
measured by counting the number of spasmodic dysphonia breaks (Bie-
lamowicz and Ludlow, 2000; Barkmeier et al., 2001). Because healthy
controls did not have any voice or speech abnormalities, their sentence
performance was not rated. Using AFNI software, voxelwise striatal
Spearman’s rank correlation coefficients were computed to assess the
statistical dependence of RAC BP at rest and RAC ABP,, during symp-
tomatic speech production with the number of spasmodic dysphonia-
characteristic voice breaks at a corrected value of p = 0.025. To account
for possible influences on correlation coefficients by a few points, a jack-
knife procedure was performed to exclude any correlation coefficients
that are statistically significant due to the presence of an outlier, as de-
scribed previously (Horwitz et al., 1986, 1991; Simonyan et al., 2013).

Asymptomatic finger tapping was performed on the button response
unit and digitized using the LabChart 7 Pro software. Although finger
tapping was recorded in all subjects, only data from 15 patients and 13
healthy controls were usable due to the technical problems in 2 controls.
Blinded finger tapping data were analyzed in both healthy controls and
patients to derive the measures of the total number of performed taps and
accuracy of the sequence performance using automated scripts devel-
oped in-house (Matlab R2010b; MathWorks) as well as a measure of the
reaction time (RT) to the task initiation using the Peak Analysis module
in LabChart 7 Pro software. To account for within-subject and between-
group RT variability, each subject’s RT measure was fitted using linear
regression, and the obtained measures were converted to z-scores using a
Fisher’s transformation. Between-group differences on these three mea-
sures (i.e., number of taps, accuracy of performance, and RT) were as-
sessed using independent two-sample ¢ tests at p = 0.017 to correct for
multiple comparisons. The parameters, which were significantly differ-
ent between the two groups, were examined for their relationships with
the RAC BP at rest and RAC ABPy, during sequential finger tapping
using voxelwise Spearman’s rank order correlation analyses with a jack-
knife resampling at a corrected value of p = 0.025.

Finally, the duration of spasmodic dysphonia was examined for its
relationship with RAC BP at rest and RAC ABP, during production of
both tasks using Spearman’s rank order correlation analyses with a jack-
knife procedure at a corrected value of p = 0.017.

Results

Behavioral measurements

In patients with spasmodic dysphonia, symptomatic sentence
production during the RAC PET scan elicited 2.4 = 1.8 (mean =
SD) voice breaks per each sentence produced, ranging in all sen-
tences from 11 breaks in the mildest case to 191 breaks in the most
severe case (Table 1). Sentence production in healthy controls
was normal without any spasmodic dysphonia-characteristic or
other voice and speech symptoms.

Sequential finger tapping was fully asymptomatic in patients,
whose performance of the number of taps (spasmodic dysphonia,
4245 * 861; controls, 4140 * 966, mean = SD; p = 0.37) and the
accuracy of performed tapping sequence (spasmodic dysphonia,
84.4 * 11.9%; controls, 86.4 * 13.7%; p = 0.34) did not differ
significantly from healthy controls. However, patients with spas-
modic dysphonia had a statistically significant delay in the initi-
ation of the experimental sequence as determined by a positive
RT value for the mean linear slope coefficient compared to a
negative RT value for the mean linear slope coefficient in controls
(spasmodic dysphonia, 0.2 * 0.3; controls, —0.2 = 0.3; p =
0.006; Table 1).

Duration of the disorder (13.3 * 7.3 years) did not show
significant correlations with either the severity of symptoms (r =
—0.21; p = 0.40) or the delay in the initiation of the tapping
sequence (r = —0.007; p = 0.98). This may be explained by the
fact that spasmodic dysphonia symptoms typically plateau within
the first year after the onset and remain unchanged for life in the
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majority of patients, while only a subset of patients reports wors-
ening or improvement of their symptoms over time (Izdebski et
al., 1984; Aronson, 1990; Tanner et al., 2011). In this study, all
patients with spasmodic dysphonia had stable symptoms for at
least 6 years, and none reported significant progression of their
voice symptoms. Our findings thus substantiate the clinical ob-
servation that patients, at least in this cohort, did not have major
changes of their voice symptoms as well as subclinical features
over the duration of their disorder.

Decreased RAC binding to striatal dopamine D, ; receptors
during resting in patients with spasmodic dysphonia
As has been shown previously, striatal dopamine D,,; receptor
distribution and tonic release of endogenous dopamine may be
assessed using the baseline RAC BP measurements at the resting
state, whereas the task-related transient phasic dopamine release
may be captured using the measure of RAC ABPy, in response to
a pharmacological or behavioral challenge (in this case, speech
production/finger tapping vs rest; Breier et al., 1997; Carson et al.,
1997; Laruelle, 2000; Wong et al., 2008; Egerton et al., 2009).
Voxelwise analysis of striatal RAC BP during resting showed
that patients with spasmodic dysphonia, compared to healthy
controls, had decreased RAC BP by 25.8% in the left putamen
and 25.7% in the right putamen (left, spasmodic dysphonia,
1.8 = 0.5; controls, 2.4 * 0.5; p = 0.001; right, spasmodic dys-
phonia, 1.7 = 0.5; controls, 2.3 * 0.4; p = 0.0007; mean = SD) as
well as 31.8% in the left caudate nucleus and 33.6% in the right
caudate nucleus (left, spasmodic dysphonia, 1.0 * 0.5; controls,
1.5 £ 0.4; p = 0.005; right, spasmodic dysphonia, 0.9 * 0.5;
controls, 1.3 = 0.3; p = 0.007; mean = SD) at an overall corrected
value of p = 0.017 (Fig. 2A, Table 2). There were no significant
differences in the RAC BP measures in either controls or patients
between the two resting scans obtained before speech and tap-
ping productions, respectively.

Decreased RAC ABPy, during symptomatic speech
production but increased RAC ABP during asymptomatic
finger tapping in patients with spasmodic dysphonia

During task production, compared to the resting baseline, both
groups showed decreased RAC binding to striatal D,/D; recep-
tors due to its displacement by endogenous dopamine release.
However, during symptomatic sentence production, RAC dis-
placement (RAC ABPy,) was less in patients with spasmodic
dysphonia than controls in the left putamen by 6.7% (mean
ABPyp, spasmodic dysphonia, —5.7%; controls, —12.4%; p =
0.017) and left caudate nucleus by 13.7% (mean ABP,, spas-
modic dysphonia, —3.5%; controls, —17.2%; p = 0.003) at an
overall corrected value of p = 0.025 (Fig. 2B, Table 2). No signif-
icant differences between the two groups were found in the right
striatum.

As hypothesized, clinically asymptomatic sequential finger
tapping was also found to be associated with abnormal RAC
ABPp, in patients with spasmodic dysphonia. However, in con-
trast to symptomatic speech production, RAC ABP,, was greater
in patients with spasmodic dysphonia than controls by 9.6 and
6.7% in the left and right putamina, respectively (mean ABPp,,
left, spasmodic dysphonia, —11.0%; controls, —1.5%; p =
0.0007; right, spasmodic dysphonia, —11.0%j controls, —5.3%;
p = 0.0008) and by 15.0 and 10.0% in the left and right caudate
nuclei, respectively (mean ABPy, left, spasmodic dysphonia,
—17.9%; controls, —2.9%; p = 0.019; right, spasmodic dyspho-
nia, —10.8%j; controls, —0.9%; p = 0.006) at an overall corrected
value of p = 0.025 (Fig. 2C, Table 2).
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Differences in RAC binding to striatal dopamine D,/D; receptors
during resting

Differences in displacement of RAC by dopamine release during

symptomatic speech production

Differences in displacement of RAC by dopamine release during

asymptomatic finger tapping

Figure 2.

in the series of coronal brain images in Talairach-Tournoux standard space.

Relationships between the clinical features of spasmodic
dysphonia and RAC binding measures

The duration of spasmodic dysphonia was not correlated with
RAC BP measure at the resting state, but established significant
correlations with RAC ABPy, during the performance of both
symptomatic and asymptomatic tasks. During symptomatic
speech production, significant negative relationships between the
disorder duration and RAC ABPy, were found in the left puta-
men (jackknife estimated r, = —0.72) and left caudate nucleus
(jackknife estimated ry = —0.68) ata corrected value of p = 0.017
(Fig. 3A). Because the duration of spasmodic dysphonia in our
patient population ranged from 6 to 31 years, we further examined
the significance of these correlations in separate groups of patients
with <15and >15 years of the disorder duration. Correlationsin the
left putamen were significantly stronger among the patients with
shorter duration of spasmodic dysphonia (jackknife estimated r, =
0.31 vs —0.41; p = 0.008), while correlations in the caudate nucleus
were stronger in patients with longer disorder duration (jackknife
estimated r, = —0.90 vs —0.62; p = 0.025).

During asymptomatic finger tapping, a significant positive
relationship between the duration of spasmodic dysphonia and
RAC ABPy, was also observed in the left caudate nucleus (jack-
knife estimated r, = 0.75) at a corrected value of p = 0.017 (Fig.
3B). The correlation coefficients showed no difference between
the groups of patients with shorter and longer durations of the
disorder (p = 0.06).

When examining the severity of spasmodic dysphonia, no sta-
tistically significant relationships were found between the de-

A-C, Group difference in RAC binding at rest (4) and its change (mean percentage ABP) during symptomatic speech
production (B) and asymptomatic sequential finger tapping (C). The color bars represent the t values and reflect the significance of
changes in striatal RAC BP measures in spasmodic dysphonia patients compared to healthy controls (spasmodic dysphonia
< healthy control, dark blue to light blue; spasmodic dysphonia > healthy control, yellow to red). All statistical maps are shown
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creased RAC BP at rest and disorder-
specific voice breaks or delayed initiation
5 of the tapping sequence. However, positive
I relationships were established between RAC
ABPy, during speaking and the severity of
" symptoms (assessed as the number of voice
I breaks during sentence production) in the
left putamen (jackknife estimated r, = 0.59)
. and right caudate nucleus (jackknife esti-
mated r, = 0.61) at a corrected value of p =
0.025 (Fig. 4A). There were no statistical dif-
ferences in the RAC ABPy, measures be-
3.0 tween the patients with mild (<50 breaks in
I all sentences produced), moderate (50—100
breaks) or severe (> 100 breaks) disorder
symptoms (all p = 0.10). However, when
examining these values in relationship with
33 the degree of symptom severity, we found
that severe patients with the high number of
voice breaks (>100 breaks) had a significant
positive correlation between their symp-
33 toms and RAC ABPy, in the left caudate
l nucleus (jackknife estimated r, = 0.48) and
| a weak positive correlation in the left
putamen (jackknife estimated r
I 0.20). Conversely, patients with the moder-
2.2 ate symptom severity (50—100 breaks)
showed a weak positive correlation in the
left caudate nucleus (jackknife estimated
r, = 0.19), but a significant negative corre-
lation in the left putamen (jackknife esti-
mated r, = —0.58). Patients with mild
symptom severity (<50 breaks) had only
negative relationships between their symp-
toms and RAC displacement in the both left
putamen and caudate nucleus (both jackknife estimated r, =
—0.60). This suggests that the overall positive relationships initially
observed between the severity of spasmodic dysphonia and RAC
ABPy, may have been influenced by the presence of severe
patients in this cohort.

In addition, a negative relationship was found between RAC
ABPyp, during finger tapping and delayed initiation of tapping
sequence in the right putamen (jackknife estimated r, = —0.60)
at a corrected value of p =< 0.025 (Fig. 4B). This indicates that
patients with longer reaction times may have generated higher
levels of striatal dopamine release during task execution. There
were no statistical differences in these correlations due to the
presence of negative RT values for the mean linear slope coeffi-
cient in a few patients with spasmodic dysphonia compared to
those with the positive RT values (all p = 0.21). Together, these
results suggest that abnormalities of task-dependent dopamine
release may fluctuate relative to symptom production, from ab-
normally low levels in mild cases to higher levels in more severe
cases.

Discussion

We demonstrated that patients with spasmodic dysphonia have
decreased RAC binding to D,/D; receptors in the bilateral stria-
tum during resting, which is associated with a significantly de-
creased RAC displacement in the left striatum during
symptomatic speech production, but increased RAC displace-
ment in the bilateral striatum during asymptomatic motor task
performance. These alterations in task-dependent dopaminergic
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Table 2. Significant differences in striatal RAC BP at rest and its changes during task production

RACBPy; Group difference in ARACBP Group difference in Group difference in
(spasmodic dysphonia/ RACBP-, (spasmodic (spasmodic dysphonia/ ARACBP (spasmodic ARACBP (spasmodic
Striatum divisions healthy controls) dysphonia << HV) (%) healthy controls) (%) dysphonia << HV) (%) dysphonia > HV) (%)
Baseline
L putamen 1.8 £ 0.5/24 =05 25.8
R putamen 1720523 =04 25.7
L caudate 1.0 £ 0.5/1.5 £ 04 31.8
R caudate 0.9 *+05/13 %03 336
Symptomatic sentence production
L putamen 12 £02/13+0.2 —57/—124 6.7
L caudate 0.9 £ 0.4/1.0 = 0.2 —3.5/—17.2 13.7
Asymptomatic finger tapping
L putamen 1.6 =£05/23 =04 —=11.0/—1.5 9.6
R putamen 17+07/24 =04 —11.0/—5.3 5.7
L caudate 0.6 £03/1.0*+04 —17.9/-29 15.0
R caudate 0.8 £04/14+04 —10.8/—0.9 10.0

For RACBP, at resting baseline, compared to controls, patients with spasmodic dysphonia showed significantly decreased RAC binding to striatal dopamine D, 5 receptors. RAC BPy, values are derived from the resting PET scan preceding
speech production and provide group means and SDs for each striatal regions at the resting state and the percentage group difference ata corrected value of p < 0.017. There were no statistical differences in the RAC BPy,, measures in either
controls or patients between the two resting scans obtained prior to speech and tapping respectively. For RAC P, and ARAC BP during symptomatic sentence production, RAC BPy, values are derived from the PET scan during speaking
and provide group means and SDs, mean percentage change in RACBP (ARACBP), and the percentage group difference in ARACBP at a corrected value of p = 0.025. Compared to controls, patients showed decreased RAC displacement
inthe left putamen and caudate nucleus. There were no differences between the two groups in the right striatum. For RAC BP ., and ARACBP during asymptomatic finger tapping, RACBP,, values are derived from the PET scan during finger
tapping and provide group means and SDs, mean percentage change in RAC BP (ARAC BP), and the percentage group difference in ARAC BP at a corrected value of p = 0.025. Compared to controls, patients with spasmodic dysphonia

showed increased RAC displacement during sequential tapping in the bilateral striatum. L, Left; R, right; HV, healthy volunteers.
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Figure3. A, B, Relationships between the duration of spasmodic dysphonia (in years) and mean percentage change in [ "'Clraclopride binding potential during symptomatic speech production
(A) and asymptomatic sequential finger tapping (B). The color bar represents the r, values. Correlations are shown in the series of coronal brain images in Talairach—Tournoux standard space.

function establish significant relationships with the severity and
duration of spasmodic dysphonia and may contribute to the
pathophysiology of this disorder.

While there is no apparent neurodegeneration or cell loss
within the basal ganglia (Standaert, 2011), experimentally, re-
duced striatal D, receptor binding has been observed in the dtr*
mutant hamster (Nobrega et al., 1996) and associated with in-
creased striatal dopamine release during the manifestation of

dystonic episodes (Hamann and Richter, 2004). In contrast, the
DYT1 dystonia mouse model exhibited normal striatal D, recep-
tor binding (Balcioglu et al., 2007; Zhao et al., 2008) with the
range of unchanged, increased, or decreased levels of striatal do-
pamine release during dystonic-like movements (Dang et al.,
2005, 2006; Shashidharan et al., 2005; Balcioglu et al., 2007;
Grundmann et al., 2007; Yokoi et al., 2008, 2011; Zhao et al,,
2008; Page et al., 2010; Song et al., 2012). Although conflicting to
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Relationship between speech-induced dopamine release and severity
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Figure4. A, B, Relationship between the clinical/subdlinical characteristics of spasmodic dysphonia and mean percentage change in[ ' CIraclopride binding potential during symptomatic speech
production (A) and asymptomatic sequential finger tapping (B). Spasmodic dysphonia severity was measured as a number of voice breaks in produced sentences. Delayed initiation time of tapping
execution was found in patients compared to controls. The color bar represents the r; values. Correlations are shown in the series of coronal brain images in Talairach—Tournoux standard space.

some extent, these results are in agreement that dopaminergic
neurotransmission is affected in dystonia and may vary between
the resting and dystonic states.

Decreased RAC binding to striatal dopamine D, ; receptors
during resting in patients with spasmodic dysphonia
In patients, decreased striatal dopamine D,/Dj; receptor binding
has commonly been found across different forms of primary
dystonia (Horstink et al., 1997; Perlmutter et al., 1997; Naumann
et al., 1998; Augood et al., 2002; Asanuma et al., 2005; Berger et
al., 2007; Carbon et al., 2009; Horie et al., 2009). In agreement
with these reports, we showed, on average, a 29.2% decrease in
RAC binding to dopamine D,/Dj; receptors in the bilateral stria-
tum during resting when patients with spasmodic dysphonia did
not exhibit any symptoms and were not engaged in any task.

Decreased RAC BP at rest is thought to reflect decreased
D,/D5 receptor availability due to decreased receptor density
and/or increased tonic dopamine levels in the synapses (Seeman
etal., 1989; Volkow et al., 1994). This may contribute to disinhi-
bition within the indirect basal ganglia pathway and lead to an
inability to suppress unwanted “nearby” motor contractions dur-
ing the production of specific actions, a well-established abnor-
mality in primary dystonia (Hallett, 2011). Both decreased
receptor density and increased tonic dopamine levels occupying
and stimulating D,/D5 receptors may further alter RAC displace-
ment during pharmacological challenge or task production
(Doudet and Holden, 2003; Egerton et al., 2009).

RAC binding to dopamine D,/D; receptors may also be de-
creased because of the ligand’s potential to bind to surface recep-

tors only and inability to access the pool of internalized receptors
(Laruelle, 2000; Ginovart, 2005). A previous PET study using
[ '*F]spiperone, which has an access to both surface and internal-
ized D,/Dj; receptors, reported a 29% decrease in receptor bind-
ing at rest in cranial and hand dystonia (Perlmutter et al., 1997),
similar to our findings of decreased RAC binding at rest in spas-
modic dysphonia. Together, these data imply that, in patients, the
resting binding of the radioligand is likely decreased to both sur-
face and internalized receptors and may not be due to the differ-
ences in the receptor internalization rate.

Abnormal RAC ABP, during task production in patients
with spasmodic dysphonia

Numerous studies in humans and animals over the past two de-
cades have confirmed that the variations in the level of RAC
binding to D,/Dj; receptors depend on the levels of drug- and/or
behavior-induced synaptic dopamine release (for review, see
Laruelle, 2000; Ginovart, 2005; Egerton et al., 2009). In patients
with spasmodic dysphonia compared to controls, we found, on
average, a 10.2% decrease in RAC ABPy, in the left striatum
during symptomatic speaking, but a 10.1% increase in RAC
ABPp, in the bilateral striatum during asymptomatic finger tap-
ping. Potentially, decreased RAC binding at rest in patients with
spasmodic dysphonia may obscure decreases in RAC displace-
ment due to dopamine release during task production. While the
possibility of such floor effect cannot be ruled out, typically, de-
creased RAC ABPy, is considered to reflect decreased phasic
dopaminergic activity and may represent a disorder-specific
pathophysiological trait involved in generation of symptoms of
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spasmodic dysphonia. On the other hand, increased RAC
ABPp, reflecting increased dopamine release during unrelated
and unaffected motor task performance, may be explained by a
compensatory adaptation of the nigrostriatal dopaminergic sys-
tem due to decreased striatal D,/D; receptor availability. In sup-
port of our findings of bidirectional fluctuations in task-
dependent dopaminergic activity, similar observations in
patients with another form of primary focal dystonia, writer’s
cramp, also demonstrated decreased RAC ABP\, during symptom
production, but increased RAC ABPy, during an asymptomatic
task in the presence of decreased RAC binding to D,/Dj receptors at
rest (Berman et al., 2013). It appears that neurochemical alterations
in primary dystonias may involve not only impaired dopaminergic
modulation of an affected task, but also more “global” abnormalities
of D,/Dj receptor structure and function at the both resting and
unaffected task production states.

We demonstrated that, during symptomatic speech produc-
tion, patients with spasmodic dysphonia had impaired dopami-
nergic function in the left striatum only. A series of experimental,
clinical, and neuroimaging studies have shown that the putamen
and head of the caudate nucleus are critical for the control of
learned voice production, such as speech and song, but not innate
emotional vocalizations, such as laughter and cry (Damasio et al.,
1982; Jurgens et al., 1982; Cummings, 1993; Lee et al., 1996; Na-
deau and Crosson, 1997; Watkins et al., 2002; Price, 2010). No-
tably, speech is affected in patients with spasmodic dysphonia,
while laughter and cry are not. Brain imaging studies showed the
greater involvement of the left putamen in speech initiation,
speed of learned voice production, semantic processing, and ver-
bal semantic and episodic memory, while the caudate nucleus
appears to be responsible for suppression of unintended re-
sponses and monitoring phonological accuracy during speaking
(Riecker et al., 2005; Tettamanti et al., 2005; Koyli et al., 2006;
Davis and Gaskell, 2009; Price, 2010; Ystad et al., 2010). Recently,
it was shown that speech-induced striatal dopamine release in
healthy humans is left-lateralized and establishes a significant
relationship with neural activity in the left putamen and influ-
ences the left-hemispheric lateralization of striatal functional net-
works (Simonyan et al., 2013). Our data suggest that decreased
dopamine release in the left putamen of patients during symp-
tomatic speech production may underlie abnormal motor voice
control, whereas the production of spasmodic dysphonia-
characteristic voice breaks might lead to persistent negative feed-
back engaging the caudate nucleus for error feedback
monitoring. This may cause pauses in firing of dopaminergic
neurons, which, in turn, may result in decreased dopamine re-
lease during symptom production.

On the other hand, sustained increases in striatal dopamine
release during asymptomatic sequential finger tapping unrelated
to voice symptoms may represent a subclinical feature of spas-
modic dysphonia. Involvement of the bilateral striatum may be
explained by a possible need to compensate for bilateral struc-
tural and/or functional abnormalities at the level of D,/D; recep-
tors to maintain the production of an unaffected task. The
breakdown of this compensatory mechanism at the neurochem-
ical level might lead to the spread of dystonic symptoms to the
other body regions. This assumption needs to be confirmed in
follow-up studies.

Clinical correlations

The duration of spasmodic dysphonia had significant correlations
with RAC displacement during production of both symptomatic
and asymptomatic tasks. This indicates that abnormalities of task-
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related dopaminergic function may evolve over the course of disor-
der. Particularly, decreased levels of speech-induced dopamine
release in the left posterior putamen were associated with the early
years of spasmodic dysphonia, whereas abnormal dopamine release
in the left anterior caudate nucleus during speaking and finger tap-
ping was correlated with longer duration of spasmodic dysphonia.
These findings point to early impairment of the habitual basal gan-
glia control (via the involvement of the posterior putamen), which,
when present over many years, appears to recruit additional abnor-
malities within the goal-directed control system (via the involve-
ment of the anterior caudate nucleus).

In addition, patients with greater symptom severity and lon-
ger reaction time to initiate tapping had higher levels of striatal
dopamine release. While the causes of such relationships are not
entirely clear, they may reflect increased motor demands in more
severe patients with higher number of dystonic voice breaks, re-
quiring compensatory increases of dopamine release to manage
greater symptoms.

Summary

In summary, the presence of global dopaminergic abnormalities
during the resting state as well as symptomatic/asymptomatic
tasks may reflect the neurochemical underpinnings of both
spasmodic dysphonia-specific and dystonia-common patho-
physiological processes, such as loss of inhibition, abnormal sen-
sorimotor integration, and maladaptive plasticity (Stamelou et
al., 2012). Furthermore, our findings of correlations between the
clinical/subclinical features of spasmodic dysphonia and altera-
tions in striatal dopaminergic function provide direct evidence
for the impact of neurochemical dysfunction on the development
of this disorder.
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