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metrics and cognitive performance. PD patients showed a 
preserved small-world network topology but a lower cluster-
ing coefficient in comparison with healthy controls. Locally, 
PD patients showed lower degree of connectivity and local 
efficiency in many hubs corresponding to functionally rel-
evant areas. Four disconnected subnetworks were also iden-
tified in regions responsible for executive control, sensory-
motor control and planning, motor coordination and visual 
elaboration. Executive functions and information processing 
speed were directly correlated with degree of connectivity 
and local efficiency in frontal, parietal and occipital areas. 
While functional reorganization appears in both motor and 
cognitive areas, the clinical expression of network imbalance 
seems to be partially compensated by the chronic levodopa 

Abstract  Cognitive impairment in Parkinson’s disease 
(PD) is related to the reorganization of brain topology. 
Although drug challenge studies have proven how levodopa 
treatment can modulate functional connectivity in brain cir-
cuits, the role of chronic dopaminergic therapy on cognitive 
status and functional connectivity has never been investi-
gated. We sought to characterize brain functional topology in 
mid-stage PD patients under chronic antiparkinson treatment 
and explore the presence of correlation between reorgani-
zation of brain architecture and specific cognitive deficits. 
We explored networks topology and functional connectivity 
in 16 patients with PD and 16 matched controls through a 
graph theoretical analysis of resting state-functional MRI 
data, and evaluated the relationships between network 
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treatment with regards to the motor but not to the cognitive 
performance. In a context of reduced network segregation, 
the presence of higher local efficiency in hubs regions cor-
relates with a better cognitive performance.

Keywords  Functional connectivity · Cognition · 
Parkinson’s disease · Graph theory

Introduction

The development of cognitive deficits in Parkinson’s disease 
(PD), predominantly affecting working memory, attentional 
processes and response inhibition, is related to the disruption 
of cortico-cerebellar loops, cholinergic circuits and dopamine 
signaling to the prefrontal cortex (Matsumoto 2015).

In order to investigate neural networks integration in PD, 
several studies have explored brain’s topological organiza-
tion through graph theory (Göttlich et al. 2013; Lebedev 
et al. 2014; Luo et al. 2014; Sang et al. 2015; Skidmore et al. 
2011; Zhang et al. 2014), which allows the assessment of 
local and global connectivity between brain networks, math-
ematically represented as a set of nodes (i.e. brain regions) 
connected by edges (Bullmore et al. 2009). So far, graph 
theory studies in PD have mainly disclosed the presence of 
a disconnection syndrome, characterized by lower degree 
of processing efficiency at both local and global level (Luo 
et al. 2015; Sang et al. 2015).

Among these studies, only two have investigated the rela-
tionship between brain functional reorganization and cogni-
tive status, both focusing on drug-naïve patients (Lebedev 
et al. 2014; Luo et al. 2015). While the role of prolonged 
chronic therapy with dopaminergic drugs on the cogni-
tive status of PD patients is still controversial (Poletti and 
Bonuccelli 2013), it is known from drug challenge studies 
that levodopa treatment can modulate metabolic response 
and enhance functional connectivity in motor and cogni-
tive brain circuits (Esposito et al. 2013; Mattis et al. 2011). 
This raises the question of which changes in brain topology 
might derive from the concurrent impact of PD pathologi-
cal processes and use of prolonged antiparkinson treatment. 
Therefore we sought to use graph theoretical analysis to 
characterize brain topology of mid-stage PD patients under 
chronic antiparkinson treatment and to explore the presence 
of correlations between reorganization of brain architecture 
and cognitive deficits.

Materials and methods

Subjects

Sixteen patients (8 males/8 females; age 62.25 ± 8.64 years, 
disease duration 10.02 ± 4.50) with clinically diagnosed 

idiopathic PD according to the clinical diagnostic criteria of 
the United Kingdom Parkinson’s Disease Society Brain Bank 
(Hughes et al. 1992), and sixteen age and gender matched 
healthy subjects (8 males/8 females; age 62.81 ± 7.08 years) 
were enrolled prospectively from the Parkinson’s and Move-
ment Disorders Center of the New York University Langone 
Medical Center (NYULMC).

Inclusion criteria were (1) age of 45 or older; (2) Hoehn 
& Yahr stage equal or less than 3 while in an “on” state; (3) 
disease duration less than 20 years; (4) anti-parkinsonian 
treatment at a stable and optimized daily dosage for at least 
4 weeks prior to study entry. Exclusion criteria were (1) 
dementia according to clinical examination and the modified 
Mini Mental State Examination (MMSE); (2) major depres-
sion according to DSM-IV criteria for current major depres-
sion; (3) clinically significant or unstable medical condition, 
including serious cardiovascular or cerebrovascular disease; 
(4) ongoing antidepressant or neuroleptic treatment.

Patients were evaluated 60 to 90 min after their morning 
dose of levodopa and disease severity was assessed using 
the Hoehn & Yahr stages and Unified Parkinson’s Disease 
Rating Scale (UPRDS). The mean levodopa equivalent daily 
dose (LEDD) was 963.53 ± 629.59 mg. PD patients were 
rated on the UPDRS (Goetz et al. 2007) on a range from 4 
to 37 (mean value ± SD 18.12 ± 8.89, range 4–37) and on 
Hoehn & Yahr staging scale on a range from 1 to 3 (mean 
value ± SD 1.93 ± 0.68, range 1–3) while on their medica-
tion. The MMSE score in PD patients was 28.54 ± 1.63, with 
a level of education of 15.23 ± 3.19 years.

Clinical and neurological examinations in healthy vol-
unteers were normal and none of them had any history of 
neurological disease. All participants had normal MRI struc-
tural images.

The study was approved by the NYULMC Internal 
Review Board and all the subjects gave informed written 
consent prior to participation.

Neuropsychological evaluation

All PD patients underwent neuropsychological evaluation 
on the same day of the clinical examination, including the 
following tests: (1) Digit Span Forward (DF) and Backward 
(DB) to assess attention and working memory; (2) Digit 
Symbol Substitution (DSS) to assess processing speed; (3) 
California Verbal Learning Test (CVLT) to assess verbal 
memory; (4) Wisconsin Card Sorting Test (WCST) to assess 
executive functions; (5) Delis-Kaplan Executive Function 
System Trail Making Test (TMT) to assess visual attention 
and task switching. In addition, the Hamilton Depression 
Rating Scale was administered to evaluate the presence and 
severity of slow mood, insomnia, agitation and anxiety. Raw 
scores for neuropsychological tests are reported in Table 1.



Brain Imaging and Behavior	

1 3

Functional magnetic resonance imaging

All subjects underwent an MRI scan on a 3T scanner (Tim 
trio Siemens Medical Solutions, Enlargen, Germany) using 
the vendor-provided 12-channel phased-array head coil on 
the same day of the clinical examination. The MRI protocol 
included: (a) T2 sequence (TR/TE = 5120/90 ms; field of 
view = 237 × 239 mm2; matrix = 444 × 448; 55 slices; slice 
thickness = 2.5 mm; in-plane spatial resolution = 0.56 × 0.56 
mm2); (b) three dimensional (3D) T1 MP-RAGE sequence 
(TR/TE = 2300/2.98 ms; TI = 900 ms; voxel size = 1 mm 
isotropic); (c) echo-planar imaging-based sequence (EPI) 
for resting state fMRI (TR/TE = 2000/30  ms; field of 
view = 205 × 205 mm2; matrix = 64 × 64; 35 slices; slice 
thickness = 3.5 mm; in-plane spatial resolution = 3.2 × 3.2 
mm2).

Resting state‑functional MRI image post‑processing

Functional images were processed and analyzed by using 
Analysis of Functional NeuroImage (AFNI) software 
(https://afni.nimh.nih.gov). The hardware-related noise in 
the time series was regressed out based on the anatomy-
based correlation corrections (ANATICOR) model; includ-
ing motion parameters, local white matter and ventricles as 
regressors. The resulting images were smoothed and nor-
malized and the final step of the pre-processing workflow 
included alignment to the Talairach space (TT_N27 stand-
ard). Brain segmentation into 206 regions of interest was 
performed in the MNI 152 space using the Eickhoff-Zilles 
probabilistic atlas within AFNI. For the construction of func-
tional brain networks, the level of functional connectivity 
between each pair of regions of interest in the network was 
computed for each data set as the correlation between their 
averaged regional time series by using Pearson’s correlation 
coefficient in Matlab (v 7.12). For the graph construction, 

these correlation coefficients represented the weights of the 
graph’s edges, and the regions of interest constituted the 
nodes (N = 206) for every subject’s brain network. The result 
of the pre-processing stage was a static, fully-connected, 
weighted, undirected, connectivity matrix for each subject.

Graph theory analysis

The positive correlations from the brain networks, that 
represent regional activity interaction, were defined by a 
weighted system as connectivity matrix.

In order to remove ‘noisy’ connections, the connectivity 
matrix was thresholded over a range of connection densities 
by using 19 sparsity levels with a 5% gap among them. The 
sparsity levels (κ) represent the supra-threshold connections 
relative to the total possible connections (1 < κ < 19). Edges 
showing a weight less than 10% of the maximum weight in 
the network were considered noise and therefore removed.

A 206 × 206 connectivity matrix was generated for each 
of the 19 sparsity levels in each subject. To ensure variance 
stabilization, the Fisher Z transformation was computed on 
the correlation matrices. The small-world topology and the 
inter-regional activity interactions were analyzed with spe-
cific graphs parameters in Matlab, using Brain Connectiv-
ity Toolbox (https://sites.google.com/a/brain-connectivity-
toolbox.net/bct/). We selected graphs metrics of interest in 
order to assess both regional and global network properties. 
As global measures we explored characteristic path length 
(L) that is a measure of communication efficiency within the 
network, and clustering coefficient (C), which is a measure 
of the nodes’ tendency to group together into tightly con-
nected clusters. As local measures we selected the degree 
of connectivity (D), which reflects the degree of interaction 
of each node with all the other nodes in the network and the 
local efficiency (El) that expresses the level of communi-
cation between neighboring nodes. While L and C charac-
terize the overall structure of the network, D and El allow 
the exploration of short and long-distance communication 
integrity.

First, the small-world network properties were evalu-
ated on both groups of subjects using the small-worldness 
coefficient (σ). A small-world network is characterized by 
small normalized path length (λ < 1) and high normalized 
clustering coefficient (γ > > 1), defining the small-world-
ness coefficient as σ = γ/λ (Rubinov and Sporns 2010). In 
order to compute σ we estimated L, and C. L is estimated 
evaluating the number of vertices traversed to get informa-
tion from a source- to a destination- node; a shorter L cor-
responds to a more integrated network (Worbe et al. 2012). 
C represents the fraction of a node’s neighbors that are 
also neighbors among them and defines the triangular for-
mations in the graph among three different brain regions 
that communicate among them, determining clusters. C 

Table 1   Raw scores for NPS battery in PD patients

All values are expressed as mean ± SD

Digit span forward 10.13 ± 2.36
Digit span backward 6.93 ± 2.05
Digit symbol substitution 52.67 ± 12.51
California verbal learning test-total correct 28.47 ± 3.83
California verbal learning test-short delay free recall 7.73 ± 1.28
California verbal learning test-long delay free recall 7.40 ± 1.88
Wisconsin card sorting test- total correct 47.67 ± 7.43
Trail making test- visual scanning 31.93 ± 11.52
Trail making test- number sequencing 57.07 ± 26.32
Trail making test- letter sequencing 48.27 ± 22.63
Trail making test- motor speed 36.87 ± 16.67
Hamilton depression rating scale 6.60 ± 3.98

https://afni.nimh.nih.gov
https://sites.google.com/a/brain-connectivity-toolbox.net/bct/
https://sites.google.com/a/brain-connectivity-toolbox.net/bct/
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and L were normalized using random generated networks 
(n = 100), which were matched to the real ones, preserving 
the number of nodes and edges. The same sparsity levels 
(κ) were applied to the random matrices. The C and L 
obtained from the random graph (L_random, C_random) 
determined the small-world network parameters (L/L_ran-
dom = λ ; C/C_random = γ).

Second, D and El were computed in both patients and 
controls. D reflects the number of nodes that communicate 
with the evaluated one and it is computed as the number of 
incident edges in that specific node. Nodes with a high D 
functionally interact with many other nodes in the network 
(Bullmore et al. 2009). El represents the level of communi-
cation between neighboring nodes. It reflects the average 
efficiency of local clusters and thus it defines the fault toler-
ance of the network (Reijmer et al. 2013).

We also analyzed hub formation in the networks, defining 
a hub as node in which the value of the parameter of choice 
was at least one standard deviation greater than the average 
mean parameter (Bassett and Bullmore 2006). The formation 
of hubs was examined for both.

Statistical analysis

The statistical analysis was performed with SPSS 19.0 
(SPSS INC., Chicago, IL). All graph measures and clinical 
parameters retained the null-hypothesis when tested with 
Kruskal–Wallis test for equal distribution within groups. 
Between-group comparisons on the graph parameters were 
explored by using a two-tailed t-test for independent sam-
ples. Once significant between-group differences in network 
metrics were observed, we further assessed the relationships 

between graph parameters and clinical scores by using 
Spearman’s bivariate correlation test. Raw scores of cogni-
tive tests were mean centered for statistical analysis. Level 
of significance was set at p < 0.05. Because of the explora-
tory nature of this study, multiple testing correction was not 
performed and therefore the reported P-values should be 
interpreted as descriptive.

Inter regional correlation in BOLD response was com-
pared between groups using the Network-Based Statistics 
Toolbox, controlling for family-wise error rate with 5000 
iterations and applying a threshold at t = 6.0 for the con-
nectivity values (p < 0.05). The statistical test used in NBS 
is performed on the sum of all functional connections sur-
viving the critical t-value. Since the extent of the network 
depends on the selected t-value, we decided to consider a 
strict (high) threshold in order to avoid the identification 
of large components as a matter of chance (Zalesky et al. 
2010). Relationships between nodal metrics from discon-
nected sub-networks and clinical parameters were tested 
with Spearman’s bivariate correlation test.

Results

Global network metrics

A small-world network topology was observed in both 
patients and controls (σ > 1). Both groups presented a greater-
than-random normalized clustering coefficient (γ > > 1) 
(mean ± SD γPD: 1.125 ± 0.141; γHC: 1.050 ± 0.052) and 
a near-random normalized path length (λ ~ 1) (mean ± SD 
ʎPD: 1.008 ± 0.004; ʎHC: 0.998 ± 0.019 (Fig. 1). Clustering 
coefficient was lower in PD (0.278 ± 0.037) as compared to 

Fig. 1   Small-World Network topology. Normalized clustering coeffi-
cient and characteristic path length are shown in the healthy controls 
(HC) group and in the Parkinson’s disease (PD) group as a function 
of the sparsity. The gamma and lambda were averaged over the net-

works of each group: HC and PD. At a wide range of sparsity, the 
networks of each group have an average gamma greater than 1 and 
an average lambda near to 1, which implies prominent small-world 
properties
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healthy controls (0.376 ± 0.039), with statistical significantly 
lower values for PD on a range of sparsity 4–7 (p < 0.05). 
Path length was higher in PD (0.997 ± 0.004) than healthy 
controls (0.989 ± 0.017), but the difference was not statisti-
cally significant.

Nodal attributes: degree and local efficiency

Based on their degree of connectivity (D), 23 D hubs were 
detected in PD and 27 in healthy controls. Among them, 14 
hubs showed statistically significant lower degree in PD as 
compared to healthy controls (p < 0.05) (Table 2 and Fig. 2a).

Based on local efficiency (El), an equal number of hubs 
(n = 19) was detected in the two groups. All hubs showed a 
statistically significant lower El in PD than healthy controls 
(p < 0.05) (Table 3 and Fig. 2b).

No correlations were detected between UPDRS motor 
scores and nodal attributes, while some correlations were 
detected between neuropsychological scores and nodal 
attributes. DSS was directly correlated with D in the left 
superior temporal gyrus (r = 0.532, p < 0.05) and El in 
the inferior frontal gyrus (left: r = 0.651, p < 0.01; right: 
r = 0.646, p < 0.01), supplementary motor area (left: 
r = 0.730; p < 0.01; right: r = 0.687, p < 0.01) and left mid-
dle occipital gyrus (r = 0.655, p < 0.01) while WCST was 
directly correlated with El in the right cuneus (r = 0.534 
p < 0.05), left inferior parietal lobule (r = 0.537, p < 0.05), 
right post-central gyrus (r = 0.528, p < 0.05) and precentral 
gyrus (left: r = 0.530, p < 0.05; right: r = 0.564, p < 0.05).

Network based statistic: disconnected sub‑networks 
identification

Analyzing the network topology, we identified four discon-
nected sub-networks (p < 0.05) (Table 4 and Figs. 3, 4). 
The computation of graph theory measures in discon-
nected sub-networks detected a lower mean value of the 
local parameters (D, El) in PD (Table 5), with the excep-
tion of sub-network 1, which includes connection between 
cerebellum and the anterior cingulate cortex. Correlations 
between nodal attributes in the disconnected networks and 
clinical metrics showed, in the executive control sub-net-
work, a direct correlation between D and DF (r = 0.512, 
p < 0.05) and an inverse correlation between E and persis-
tent errors at the WCST (r = −0.599, p < 0.05) while, in 
the visual sub-network, a direct correlation between D and 
both Hoehn & Yahr stage (r = 0.545, p < 0.05) and UPDRS 
score (r = 0.548, p < 0.05) as well as an indirect correlation 
between E and incorrect answers/persistent errors at the 

Table 2   Hubs showing a significant lower degree in PD than HC

Hubs showing a statistically significant lower degree in PD as com-
pared to HC (p < 0.05). The coordinates are given as stereotaxic coor-
dinates referring to the atlas of Talairach and Tournoux
Abbreviations: L left, R right
*p < 0.01

Brain area Coordinates p-value

x y z

Postcentral gyrus, L −40 −30 52 0.0074 *
Postcentral gyrus, R 46 −27 51 0.0132
Inferior parietal lobule, L −40 −34 46 0.0149
Inferior frontal gyrus, L −48 8 31 0.0190
Inferior frontal gyrus, R 49 26 16 0.0082 *
Paracentral lobule, L −7 −37 58 0.0030 *
Paracentral lobule, R 8 −35 57 0.0006 *
Cuneus, R 14 −74 27 0.0276
Middle occipital gyrus, L −31 −76 12 0.0022 *
Middle occipital gyrus, R 34 −77 14 0.0026 *
Middle temporal pole, L −34 13 −26 0.0100
Middle temporal pole, R 42 13 −25 0.0391
Superior parietal lobule, L −18 −61 52 0.0199
Superior temporal gyrus, L −61 −20 7 0.0390

Fig. 2   D and El hubs. Statistically significant difference in degree hubs (a) and local efficiency hubs (b) in Parkinson’s disease and healthy con-
trols group (p < 0.05)
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WCST (respectively r = − 0.618, p < 0.05 and r = − 0.792, 
p < 0.01) were present.

Regarding the global parameters, the C was higher in PD 
while L was lower, with the exception of sub-network 4, 
which includes connection between the basal ganglia and 
the occipital cortex.

Discussion

Our findings show, consistently with previous studies (Göt-
tlich et al. 2013; Luo et al. 2015; Sang et al. 2015; Zhang 
et al. 2014), a preserved small-world network topology in 
PD but highlight the presence of a less efficient organization 
of the brain network, expressed by the presence of a lower 
clustering coefficient in comparison with healthy controls, 
in alignment with what described in other neurological and 
psychiatric diseases (Stam et al. 2009; van den Heuvel et al. 
2013). The preservation of a small-world architecture in 
presence of pathology is not surprising, since essentially all 
real-world networks exhibit the high levels of local cluster-
ing and the short overall path length that characterize this 
organization. Rather, the distinctiveness of each network 
relies in the ways in which its small-world properties deviate 
from a randomly generated network, where all nodes have 
equal probability of being connected (Bullmore et al. 2009).

As a consequence, despite the small-world topology 
exhibited by PD patients, their small-world properties dif-
fer from the ones exhibited by the matched normal controls 
and reported in early-stage PD patients (Sang et al. 2015). 
Our population showed a lower local efficiency when com-
pared with controls and no differences in terms of global 
efficiency, while, in early-stage PD patients, the converse 
has been generally found, with a significant decrease in 

Table 3   Hubs showing a significant lower local efficiency in PD than 
HC

Hubs showing a statistically significant lower local efficiency in PD 
as compared to HC (p < 0.05). The coordinates are given as stereo-
taxic coordinates referring to the atlas of Talairach and Tournoux
Abbreviations: L left, R right
*p < 0.01

Brain area Coordinates p-value

x y z

Postcentral gyrus, L −40 −30 52 0.0170
Postcentral gyrus, R 46 −27 51 0.0157
Lingual gyrus, L −8 −79 4 0.0121
Lingual gyrus, R 15 −75 4 0.0088 *
Cuneus, L −11 97 9 0.0247
Cuneus, R 15 −90 12 0.0246
Inferior parietal lobule, L −40 −34 46 0.0155
Inferior parietal lobule, R 34 −38 47 0.0169
Precentral gyrus, L −46 −17 35 0.0175
Precentral gyrus, R 36 −33 48 0.0189
Inferior frontal gyrus, L −48 8 31 0.0201
Inferior frontal gyrus, R 48 7 18 0.0190
Paracentral lobule, L −7 −37 58 0.0340
Paracentral lobule, R 8 −35 57 0.0268
Middle occipital gyrus, L −31 −76 12 0.0213
Superior parietal lobule. L −18 −61 52 0.0130
Superior parietal lobule. R 19 −60 52 0.0108
Superior occipital gyrus, L −16 −80 26 0.0300
Superior occipital gyrus, R 23 −77 27 0.0131

Table 4   Disconnected sub-
networks in Parkinson’s disease 
patients

The network index is used to group the region-pairs into a sub-network. Statistical significant differences 
are expressed as * for p < 0.05 and ** for p < 0.01
Abbreviations: L left, R right

Network index Brain region

1* Cerebellum IX Hem,L Anterior Cingulate Ctx, L
Cerebellum IX Hem, R Anterior Cingulate Ctx, L

2* Globus Pallidus Medial, R Inferior Frontal gyrus, L
Globus Pallidus Medial, R Supplementary Motor, L (area 6)

3** Globus Pallidus Lateral, L Supplementary Motor, L (area 4a)
Cerebellum VII b, R Intraparietal sulcus, L
Globus Pallidus Lateral, L Intraparietal sulcus, L
Cerebellum VII b, R Intraparietal sulcus, R
Globus Pallidus Lateral, L Inferior Temporal gyrus, L
Globus Pallidus Lateral, L Inferior Temporal gyrus, R
Middle Temporal Pole, L Globus Pallidus Lateral, L

4** Putamen, L Visual cortex, L (hOC5_V5)
Middle Occipital gyrus, L Globus Pallidus Lateral, R
Putamen, L Middle Occipital gyrus, L
Putamen, L Middle Occipital gyrus, R
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global efficiency and without changes in local efficiency. 
Different PD stages seem therefore to exhibit different 
small-world patterns with a prevailing integration defi-
cit in early PD and a prevalent segregation disruption in 
advanced PD.

Locally, patients with PD showed lower degree of con-
nectivity in many hubs corresponding to functionally rel-
evant areas involved in interpretation of sensory information 
and multimodal integrating functions. We confirm the pres-
ence of a decreased connectivity degree in the supplemen-
tary motor area, already described by Wu and colleagues 
and interpreted, considering the central role of this region 
in motor selection and initiation of movements, as a critical 
factor contributing to the development of akinesia in PD 
patients (Wu et al. 2009).

In addition, our findings revealed a decreased nodal 
degree in superior and inferior parietal lobule, whose crucial 

role in normal aging and neurodegenerative disorders has 
been reported by several fMRI studies (Delaveau et al. 2010; 
van Eimeren et al. 2009). A significantly lower degree in 
PD group was also detected in the inferior frontal gyrus, 
involved in suppression of habitual responses, an integral 
part of executive functions known to be affected in PD 
patients (Aarsland et al. 2012). These data, in addition to 
the overall lower local efficiency in PD patients compared to 
healthy controls, reflect diffuse, lower-level communication 
effectiveness between neighboring brain areas.

When we evaluated the inter regional functional con-
nectivity, we identified four disconnected subnetworks in 
regions responsible for executive control, sensory-motor 
control and planning, motor coordination and visual elabo-
ration. In particular, the disconnection of occipital cortex 
network in PD is consistent with a recent report (Tessitore 
et al. 2012). Since PD patients rely mainly on visual cues to 

Fig. 3   Disconnected sub-networks in Parkinson’s disease patients. Each sub-network is identified by a different color. The nodes dimension is 
proportional to the hubs degree. The links represent the statistically significant disconnected paths
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control locomotion (Sage and Almeida 2010), visual defi-
cit have been correlated with gait disturbances and greater 
disability (Uc et al. 2005); moreover, the impairment of 
multimodal integration function of extrastriate cortex may 
contribute to the neuropsychological deficit in PD patients. 
Eventually, the disconnection of medial globus pallidus and 
cerebellum with areas involved in executive controls seems 
to mirror the pattern of cognitive impairment in PD with 
prevalent involvement of the fronto-subcortical attention-
executive domain (Svenningsson et al. 2012). These hypoth-
esis are further confirmed by the correlations we identified 
between nodal attributes of the disconnected networks and 
both motor and cognitive metrics.

The estimation of graph metrics within disconnected net-
works clarifies that not only they are poorly integrated in the 
global brain network but they also present increased fault 
susceptibility, as expressed by the lower local efficiency in 
comparison with healthy controls.

In contrast with previous reports (Lebedev et al. 2014; 
Vervoort et al. 2016; Wu et al. 2009), we did not identify 
any subnetwork showing enhanced connectivity. The lack 
of localized hyperconnectivity might be due to the down-
regulation of functional connectivity induced by levodopa 
treatment (Wu et al. 2009). In alternative, it could be related 
to the longer disease duration and more advanced disease 
stage of our population, which could explain a decline in 
compensatory connectivity over time.

Although no correlations were identified between graph 
parameters and LEDD, the lack of correlations between most 
of our functional metrics and motor scores could still be 
attributed to the potentially confounding effects of chronic 

dopaminergic medications, that can partially restore the defi-
cits in the functional brain network (Delaveau et al. 2010).

With regard to the clinical impact of our findings, we 
detected a significant direct correlation between the DSS 
scores, expression of information processing speed, and 
the degree of connectivity of the superior frontal gyrus, 
responsible for manipulation of relevant information and 

Fig. 4   Functional connectivity in altered subnetworks. Numbers from 1 to 4 identify the four disconnected sub-networks in Parkinson’s disease 
(a) and healthy controls (b). Abbreviations: SN sub-networks

Table 5   Graph parameters in disconnected sub-networks

Graph theory measures with significant statistical differences in Par-
kinson’s disease compared with healthy controls are in bold
Abbreviations: D degree of connectivity, El local efficiency, C cluster-
ing coefficient, L path length

Network Metric Parkinson’s disease Healthy controls p-value

1 D 87.550 ± 23.720 84.45 ± 24.592 0.397
El 0.398 ± 0.067 0.412 ± 0.103 0.538
C 0.015 ± 0.009 0.052 ± 0.014 < 0.01
L 0.726 ± 0.278 0.791 ± 0.269 < 0.05

2 D 101.817 ± 30.279 106.358 ± 32.149 0.062
El 0.387 ± 0.128 0.473 ± 0.181 < 0.05
C 0.026 ± 0.011 0.051 ± 0.019 < 0.01
L 0.792 ± 0.269 0.985 ± 0.049 < 0.01

3 D 105.319 ± 23.323 114.078 ± 23.601 < 0.01
El 0.414 ± 0.102 0.520 ± 0.150 < 0.01
C 0.307 ± 0.054 0.398 ± 0.086 < 0.01
L 0.820 ± 0.202 0.830 ± 0.206 0.621

4 D 96.881 ± 21.702 109.483 ± 21.975 < 0.01
El 0.385 ± 0.119 0.506 ± 0.164 < 0.01
C 0.278 ± 0.058 0.166 ± 0 < 0.01
L 0.820 ± 0.267 0.78 ± 0.205 < 0.01
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subsequent organization of sequence of actions. DSS score 
was also directly correlated with local efficiency in areas 
involved in inhibiting behavior, motor planning and visual 
association. WCST score, a measure of executive functions, 
was directly correlated with El of areas involved in sensory 
and visual perception, integration and elaboration of sensory 
inputs and motor execution.

Although our findings are preliminary, we speculate that, 
in a context of reduced network segregation, the presence of 
higher local efficiency in hubs regions correlates with a bet-
ter cognitive performance. The lack of neuropsychological 
data in our control population prevented us from drawing 
conclusions on the pathological specificity of our results.

The main limitation of the present study is the small 
sample size. In particular, having only four patients with a 
tremor-dominant subtype, we could not investigate differ-
ences in brain networks in relation to the clinical phenotype; 
larger studies could provide more information about the neu-
ral bases of tremor-dominant vs akinetic-rigid phenotype.

In addition, even if our choice of analyzing PD patients under 
chronic antiparkinsonian treatment reflects accurately a real-
world population, it might have added confounding factors to 
the results interpretation. Although the chronic use of dopamin-
ergic therapy influences cerebral networks and cortical plasticity, 
withdrawal from dopaminergic medication would have not been 
sufficient to reverse such effects and would have caused practical 
difficulties. Further studies in drug-naïve patients, are warranted 
to define the acute effects of dopaminergic drugs.

Finally, in the light of recent findings on diffusion-based 
structural connectivity in PD (Galantucci et al. 2017; Nigro 
et al. 2016), the integration of structural and functional data 
might, in the future, help elucidate the basis of the functional 
plasticity observed in PD and its clinical impact on patients’ 
cognitive status.

In conclusion, we investigated for the first time the func-
tional abnormalities responsible for motor and cognitive defi-
cits in mid-stage PD patients under chronic antiparkinson treat-
ment. Although further studies on larger cohorts are needed 
to confirm this hypothesis, our results suggest that, while 
functional reorganization appears in both motor and cognitive 
areas, the clinical expression of network imbalance seems to 
be partially compensated by the chronic levodopa treatment 
with regards to the motor but not to the cognitive performance.
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