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Our ability to learn and control the motor aspects of complex

laryngeal behaviors, such as speech and song, is modulated by

the laryngeal motor cortex (LMC), which is situated in the area 4

of the primary motor cortex and establishes both direct and

indirect connections with laryngeal motoneurons. In contrast,

the LMC in monkeys is located in the area 6 of the premotor

cortex, projects only indirectly to laryngeal motoneurons and its

destruction has essentially no effect on production of species-

specific calls. These differences in cytoarchitectonic location

and connectivity may be a result of hominid evolution that led to

the LMC shift from the phylogenetically ‘old’ to ‘new’ motor

cortex in order to fulfill its paramount function, that is, voluntary

motor control of human speech and song production.
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Introduction
The larynx participates in a wide range of vital behaviors,

such as breathing, swallowing and voice production, all of

which are indispensable for our existence and communi-

cation. While breathing and swallowing are innate beha-

viors, the ability to produce voice for speaking and singing

involves intensive learning and requires a proper integ-

ration between several brain networks for the motor

output of an uttered word. The ability to control laryngeal

muscles voluntarily is most remarkable in actors and

singers, who are able, on demand, to raise and lower

the larynx, regulate the amount of airflow through the

vocal folds, tense and relax the vocal folds, and even move

each vocal fold separately in order to modulate their

speaking or singing voice.
www.sciencedirect.com 
Voluntary voice production in humans is under the direct

control of the laryngeal motor cortex (LMC), which gives

rise to a final common cortical motor pathway descending

via the corticobulbar tract and communicating with lar-

yngeal motoneurons in the brainstem to innervate the

laryngeal muscles. In regard to the central motor control,

the open question is what (neurologically) makes us

humans unique in our ability to learn and produce voice

for speech and song as oppose to other primate species,

which have limited, if any, capacity for vocal learning and

voluntary voice production [1,2��]. A possible candidate

brain region that appears to have grossly similar but

importantly distinct topology and connectivity in humans

compared to other mammals is the LMC itself.

The laryngeal motor cortex: location
In contrast to other body part representations within the

primary motor cortex, the exact LMC location in humans

remained largely unknown until recently. Based on the

seminal work by Penfield and colleagues in 1930s–1950s

[3��], the LMC was assumed to be located somewhere

within the vocalization area in the inferior portion of the

precentral gyrus, just above the swallowing and below the

face representations (Figure 1a). Using direct electrical

stimulation, the LMC was also identified in the chim-

panzee, rhesus monkey, and squirrel monkey but its

location was far rostrally within the precentral gyrus

[4�,5] compared to Penfiled’s vocalization area in humans

[3��]. The existence of a motor cortical region specialized

for isolated vocal fold movements was questioned in other

mammals, such as the dog and cat [6]. A recent study

reported that the laryngeal motor cortical representation

might exist in mice and is possibly involved in the

modulations of pitch of ultrasound vocalizations [7],

although these findings and their homology with the

human and non-human primate LMC require further

investigation.

The LMC regions in humans and non-human primates

are considered to be homologues [2��,8] because, while

stimulated, both yield an approximation (or adduction) of

vocal folds to the midline of the larynx, which is inde-

pendent from the movement of the other facial or upper

body muscles [4�,9–13]. Physiologically, vocal fold adduc-

tion is necessary for the majority of laryngeal behaviors,

such as voice production, coughing, sneezing, stabilizing

thorax for lifting heavy weights, etc. A recent series of

neuroimaging studies suggested that the LMC in humans

is located more caudally within the precentral gyrus

compared to the LMC of non-human primates [4�,5]
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Figure 1

(a) (b)

left

6
4 4

LittleRingMiddle
IndexThumbNeckBrowEyelid & eyeball

Face

Lips

Jaw

Tongue

Swallowing

Vocalization

Mastication
Salivation

TR. PYR.

Ank
le

K
ne

e
H

ip
T

ru
nk

S
houlder

E
lbow

W
rist

H
and

Toe
s

MOTOR SEQUENCE

I N
T

E
G

R
A

T
I N

G
 A

R
E

A

Current Opinion in Neurobiology

(a) The ‘Motor sequence’ within the primary motor cortex with the extensive vocalization region in the inferior portion of the precentral gyrus [62]. (b)

Meta-analysis of 19 fMRI studies between 2000 and 2013 using activation likelihood estimation (ALE) of brain function during voice production

(GingerALE software). Bilateral peaks of LMC activation were found in the area 4p with an additional peak of activation in the left area 6 [15]. Data are

presented on a series of sagittal slices in the standard Talairach-Tournoux space.
and more dorsally from the Sylvian fissure than originally

thought based on the vocalization mapping studies by

Penfield and colleagues [3��]. We conducted a meta-

analysis of 19 functional MRI (fMRI) studies between

2000 and 2013 in healthy humans during production of

meaningful and meaningless syllables, vowels, glottal

stops, and phonation with and without articulatory move-

ments and identified that the bilateral peaks of activation

corresponding to the LMC are located in the primary

motor cortex (area 4 of Brodmann [14]) [15] (Figure 1b).

This finding is in line with high-resolution multi-elec-

trode cortical recording study during syllable production

[16] and transcranial magnetic stimulation (TMS) study

of the motor cortex during resting and voice production

[17,18,19], which reported the laryngeal muscle repres-

entation in the dorsal portion of the ventral primary motor

cortex. Furthermore, the location of this region corre-

sponds to the motor cortical area where left hemisphere

lateralized brain activity during reading is associated with

FOXP2 polymorphism [20]. The peak of activity within

the LMC, as identified in our meta-analysis study, was

located in the posterior part of area 4 (i.e. area 4p of Geyer

et al. [21,22]). It has been shown that the area 4p is

involved in initiation and execution of motor commands
Current Opinion in Neurobiology 2014, 28:15–21 
as well as modulation of movement-related attention as

oppose to the area 4a (the anterior part of area 4), which

functionally resembles the secondary motor cortex by

requiring higher-order sensory feedback for motor execu-

tion [23–25].

The meta-analysis of neuroimaging literature has also

showed an additional peak of activation in the left pre-

motor cortex (area 6 of Brodmann) [15] (Figure 1b), which

is similar to the location of monkey LMC, as described

below. Studies using direct electrical stimulation of the

motor strip in the macaque have identified the laryngeal

muscle representation only between the inferior branch

of the arcuate sulcus rostrally and the subcentral dimple

caudally [4,11,26] (Figure 2b). A similar location of LMC

was also described in the squirrel monkey [12,27,28]. The

LMC region in the rhesus monkey was shown to contain

vocalization-related neurons [26]. Cytoarchitectonically,

this region falls within the premotor cortex (area 6 of

Brodmann [14], area 6ba of Vogt and Vogt [29], area

FCBm of von Bonin and Bailey [30], area F5 of Matelli

et al. [31], area 6VR(F5)/ProM of Paxinos et al. [32], or area

F5(6Va/Vb) of Saleem and Logothetis [33]). However,

extensive explorations of the precentral gyrus with direct
www.sciencedirect.com
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electrical stimulation in non-human primates have failed,

so far, to identify a region within the primary motor cortex

(i.e., the area 4), which would elicit isolated bilateral

laryngeal muscle movements [11,26,27].

The laryngeal motor cortex: connectivity
Another distinct feature of the LMC organization be-

tween humans and non-human primates is its projection

network. Both species have largely comparable LMC

structural connectivity with numerous cortical and sub-

cortical brain regions [8,15,34]. Human LMC in the area 4

appears to have a more refined and dense projection

network with the parietal cortex, supporting a more active

sensorimotor integration for voluntary voice control. Con-

versely, monkey’s LMC in the area 6 has greater con-

nectivity with the anterior cingulate cortex, which is

potentially important for voluntary initiation of geneti-

cally pre-programmed species-specific calls [2��,35].

The only connection that is exclusively present in

humans but not in monkeys is the direct (monosynaptic)

projection from the LMC to nucleus ambiguus, a site of

laryngeal motoneurons in the brainstem [27,36��,37,38��]
(Figure 2). Instead, the monkey LMC is connected with

the nucleus ambiguus via the dorsal and parvicellular

nuclei of the reticular formation of the brainstem

[27,39], which is known to be involved in vocal motor

coordination of vocalizations [28]. It is, therefore, not

surprising that electrophysiological experiments in

humans and monkeys have demonstrated significant

differences in onset latencies of cortical motor evoked

potentials (MEPs) from the laryngeal muscles. Studies

using transcranial magnetic stimulation (TMS) in healthy

humans were successful in identifying the topographic

representation of different laryngeal muscles within the

primary motor cortex with the onset latencies of cortico-

bulbar MEPs ranging from 7.3 ms to 14.1 ms [17–19,40–
42]. Similarly, distinct cortical topography of laryngeal

muscles was described in non-human primates, but with a

location in the premotor cortex and MEP onset latencies

more than twice as long at 20–40 ms [4�]. Direct LMC-

ambigual projections in humans allow the LMC to bypass

the relay station in the reticular formation and thus

directly modulate the activity of brainstem laryngeal

motoneurons.

The laryngeal motor cortex: function
The existence of direct projections descending from the

LMC to laryngeal motoneurons of the brainstem in

humans only may explain an important observation that

LMC stimulation elicits vocalizations in humans but not

monkeys [3��,9]. Physiologically, the direct monosynaptic

pathway in humans facilitates the ability of nucleus

ambiguus to control the production of complex voluntary

learned laryngeal movements during speaking and sing-

ing [36��]. In non-human primates, the indirect access of

the LMC to nucleus ambuguus via reticular formation
www.sciencedirect.com 
limits production of voluntary learned laryngeal patterns.

The role of LMC in these species may primarily be

related to the control of other (by and large innate)

laryngeal behaviors, such as coughing, swallowing,

breathing, etc. [12]. Moreover, while monkeys lack a full

coordination between the laryngeal and other articulators

[2��,26], they are still able to control the basic aspects of

their innate vocalizations, for example, tuning the ampli-

tude and duration of calls to environmental parameters

[43,44,45]. This may be possible through the direct con-

nections that the LMC establishes with the other cortical

and subcortical brain regions involved in voice control,

such as the anterior cingulate cortex, ventrolateral reti-

cular formation, and motor and sensory pools of neurons

in the brainstem controlling orofacial articulators

[11,27,36��]. Based on recordings from the premotor

LMC in the macaque, a recent study defined a population

of neurons, two-thirds of which discharged before the

sound onset and one third were time locked with the

sound onset [26]. However, these premotor neurons fired

only during conditioned and not spontaneous vocaliza-

tions, suggesting that they have limited role in voluntary

control of monkey species-specific calls. Another study

using single-cell recording in vocalizing monkeys ident-

ified neurons in the monkey homologue of human’s Broca

area (areas 44 and 45) in the ventrolateral prefrontal

cortex, which predominantly fired before conditioned

vocal onset, suggesting the involvement of this region

in motor selection and voluntary call initiation [46].

The ‘disadvantages’ of direct LMC-ambigual connec-

tivity are reflected in inability to control different aspects

of voluntary voice production (e.g., modulation of pitch,

intensity and harmonious quality of voice) when the

LMC is lesioned bilaterally in humans [3��,39,47,48].

However, human innate vocalizations, such as laughter

and cry, remain generally unaffected due, in part, to

independent control by other cortical (e.g., anterior cin-

gulate cortex) and subcortical (e.g., periaqueductal gray)

structures [2��,8]. On the other hand, bilateral LMC

lesions in non-human primates appear to have little, if

any, effect on acoustic structure of their vocalizations [49–
51], again pointing to a limited role of this region in the

control of complex voluntary voice production in these

species.

The laryngeal motor cortex: the hypothesis
The absence of laryngeal representation in the primary

motor cortex and of direct (monosynaptic) motor cortical

connections with brainstem laryngeal motoneurons in

non-human primates has been puzzling for several years

[2��,52–55]. We proposed earlier ‘the fact that monkeys,

in contrast to humans, lack a direct connection of the

motor cortex with the laryngeal motoneurons suggests

that this connection has evolved in the last few million

years and might represent one of the factors that made

speech evolution possible’ (p. 43, [36��]). These crucial
Current Opinion in Neurobiology 2014, 28:15–21
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Figure 2
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(a) Schematic drawing of the human brain and larynx (left) with the insets showing (top) the sites of vocalization elicitation during direct electrical

stimulation of the primary motor cortex [63] and (bottom) the sagittal section of the brainstem depicting the distribution of degenerating fibers (small

dots) in the nucleus ambiguus (Amb) and surrounding reticular formation [38��]. The arrows represent the direct (monosynaptic) connections from the

LMC to the reticular formation and nucleus ambiguus, the site of laryngeal motoneurons, which project to the laryngeal muscles (b) Schematic drawing

of the macaque brain and larynx (left) with the insets illustrating (top) topographic representation of the intrinsic and extrinsic laryngeal muscle in the

premotor cortex [4�]. Sca — subcentral dimple; right-angled triangle — cricothyroid muscle; circle — thyroarytenoid muscle; encircled right-angled

triangle — combination of the cricothyroid and thyroarytenoid muscles; square — extrinsic laryngeal muscles. (bottom) The cross-section of the

brainstem and photomicrographs show terminal fields of the laryngeal motor cortical projections in the reticular formation (RF) but not nucleus

ambiguus in the rhesus monkey, which was injected with the anterograde tracer, biotin dextranamine, into the LMC [36��]. The arrows show indirect

connection of the LMC with the nucleus ambiguus via the surrounding reticular formation. The scale bar corresponds to 50 mm.
differences between the two species may be explained in

the light of an emerging view of the organization of the

motor cortex. Based on differential distribution of cortico-
Current Opinion in Neurobiology 2014, 28:15–21 
motoneuronal cells that make monosynaptic connections

with motoneurons innervating arm and hand muscles,

Rathelot and Strick defined two subdivisions within
www.sciencedirect.com
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the primary motor cortex, the rostral ‘old’ and the caudal

‘new’ [56��]. The rostral ‘old’ region on the crest of the

precentral gyrus appears to be a standard structure for

many mammals, such as the monkey, rodent, cat, and

opossum, and contains neurons influencing arm moto-

neurons indirectly via at least a disynaptic pathway

[57,58]. It is thought to function through the integrative

mechanisms of the spinal cord to generate motor beha-

viors. Conversely, neurons in the caudal ‘new’ region

within the primary motor cortex are located within the

anterior bank of the central sulcus and establish mono-

synaptic connections with motoneurons. Phylogeneti-

cally, this is a relatively new development, which is

observed only in cebus monkeys, macaques, and great

apes along with humans [57]. The existence of a mono-

synaptic motor cortex to motoneuron connection enables

the generation of more complex patterns of arm/hand

muscle activity for the performance of highly skilled

movements [56��]. Interestingly, in macaques, the des-

cending projections of the ‘old’ primary motor cortex are

present at birth, whereas the connections of the ‘new’

motor cortex are formed over the first few months of life

and mature at around two years of age [57,59–61]. The

latter coincides with the monkey’s ability to produce fine

finger movements for skilled hand tasks.

It is highly conceivable that the differences in the LMC

cytoarchitectonic location and its direct vs. indirect brain-

stem connectivity between humans and non-human

primates may explain the differences in functional ability

of the LMC to control fine voluntary laryngeal move-

ments. It is plausible to suggest that, in non-human

primates, the rostral LMC representation in the premotor

cortex, with its indirect access to laryngeal motoneurons,

may correspond to phylogenetically and ontogenetically

‘old’ motor cortex with the basic function to control

laryngeal movements during innate behaviors. During

the course of hominid evolution, the LMC representation

appears to be ‘shifted’ caudally to the ‘new’ motor cortex,

establishing the direct access to laryngeal motoneurons

and providing our ability to voluntarily control laryngeal

movements for complex learned behaviors, such as

human speech and song. Furthermore, the ‘new’ LMC

in humans allows for better integration of incoming

sensorimotor information from auditory, parietal and pre-

frontal cortices, which is critical for normal speech and

language control. In addition, humans preserved the

‘older’ LMC in the premotor cortex (at least in the left

hemisphere, Figure 1b) for additional indirect control of

laryngeal motoneurons via the reticular formation, similar

to monkeys.

As in case of maturity of ‘old’ and ‘new’ arm and hand

motor regions, newborn’s cry at birth is an innate behavior

not requiring either vocal learning or voluntary manip-

ulation of laryngeal movements. However, even very

young children are able to modulate the pitch and
www.sciencedirect.com 
duration of their cries or imitate sounds to gain attention

at around four months of age, well before they are able to

produce their first word. As speech development is a

gradual process with the ability to speak in complete

multi-word sentences typically at around three years of

age, it may coincide with the establishment of full con-

nectivity between the ‘new’ LMC and laryngeal moto-

neurons in the brainstem. In addition, left representation

of both ‘old’ and ‘new’ LMC as oppose to only ‘new’

LMC in the right hemisphere may point to some clues for

understanding the intrinsically left-hemisphere dominant

speech and language networks. Modern neuroanatomical

tract tracing using rabies virus in non-human primates

combined with high-field and ultra-high field structural

and functional brain imaging in humans are promising

methods to provide a more definite answer and shed light

on the evolutionary differences of functional importance

of the LMC in these closely related species.
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